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Final Report: Learning Mixed-Strategy Play in Penalty Kicks


Introduction to the game and related terms
My NetLogo model will be an implementation of mixed-strategy play in penalty kicks of soccer. The data and information used to create this model are based on the material in a 2003 paper by Iganacio Palacios-Huerta, titled ‘Professionals Play Minimax’. Chapter 6 of 'Soccernomics', written by Simon Kuper and Stefan Szymanski, heavily draws upon the study. In the opening paragraphs of the chapter, the authors note that penalty kicks - or even a single penalty kick - can have a huge economic impact on a soccer club. A story which involves the 2008 Champions League final, contended between Chelsea and Manchester United, is discussed; the game was won by Manchester United 6-5 on penalties, after the regulation and extra times closed at 1-1. The economic lesson from this anecdote is that one penalty miss cost Chelsea $170 million dollars, and their then-manager Avram Grant was fired after less than a year on the job, having led the team to the final match of the world’s most prestigious club soccer tournament. Another victim of short-sighted policies common in top levels of the sport, Grant that year had set a managerial record which remains to be surpassed by any subsequent Chelsea manager.
Prior to the match, Palacios-Huerta had been hired by Chelsea in anticipation of the game going into a penalty shootout. Palacios-Huerta had told Chelsea players that Edwin van der Sar - Manchester's goalkeeper - tended to dive to his opponent’s “natural side” when facing penalty takers. A player’s natural side is deemed to be the opposite of his footedness; if van der Sar faced a right-footed player, he would tend towards his right, which is the same as the penalty taker’s left. So Chelsea players were advised to kick to their non-natural sides. 
A penalty shoot-out in such a tournament game is initially a best-out-of-five game. Five kicks are given to each team and the game runs until a team cannot tie or win even if they score all of their remaining kicks. If at the end of these first ten kicks the game is tied, every subsequent round becomes a sudden death game, and the shoot-out continues indefinitely until one team scores while the other doesn’t. At any moment, no player can shoot again until everyone in his team has shot as many as he. 
Every player in the Chelsea squad up to their fourth kicker, Ashley Cole, took Palacios-Huerta’s advice to heart and had scored. Cole, a left-footed player, shot to his natural side, and the ball would make contact with van der Sar’s hands, only to be deflected into the goal. When Chelsea’s fifth kicker, their captain John Terry, stepped up, Cristiano Ronaldo of Manchester had missed while no Chelsea player had, which meant that a goal would secure Chelsea the win. Terry also followed the economist’s advice, but slipped on his left foot during his run-up, and the ball flew toward the wrong side of the goal posts.
Still, Chelsea’s next kicker abided by Palacios-Huerta’s words to a success, while no one at Manchester United missed either. Nicolas Anelka was Chelsea’s seventh kicker, and was their only right-footed player who did not follow the economist’s advice. Van der Sar threw himself towards his right and smothered Anelka’s shot, and then the game was won. The authors speculate that Anelka was thrown off by van der Sar's gesture just before Anelka's kick; van der Sar’s finger was pointing at the corner of the goal to his left, suggesting that he knew where Anelka was planning on putting the ball. 
	Despite the intriguing anecdote outlining an almost successful implementation of a pure-strategy play, Kuper and Szymanski make the argument, supported by Palacios-Huerta’s paper, that this game, one that involves such large risks and rewards, can be analyzed as an example of a game which should utilize mixed strategies and thus a great deal of randomness. 

Other technicalities and statistical analysis
	Each penalty kick is a well-organized game. Before the taker can kick the ball, the goalkeeper must be standing on the goal-line, between the two goal posts, and is prohibited from moving forward until the taker makes contact with the ball. The penalty taker is allowed to feint in his run-up towards the ball in order to deceive the goalkeeper, but not during his kick; feinting while the referee deems the taker’s run-up to be over will be punished by a yellow card. We assume that there are two pure strategies given to each player: left and right. A ball kicked to the center of the goal is considered kicked to the taker's natural side. Palacios-Huerta cites personal interviews with players and analysis of angles of approach to the ball as reasons for this choice.
Many studies show that chance of success for the penalty taker significantly decreases when he takes into account any behavior of the goalkeeper prior to his kick. Lastly, a kicked ball travels the 12 yards for 0.3 seconds on average, which is less than the goalkeeper’s reaction time to the flight of the ball, which has been measured at 0.22 seconds after the ball sets off, in addition to his movement time. It is concluded that each player involved makes his decision independently of the other.
The results of penalty kicks are, and must be, highly unpredictable. A player may be more inclined to kick the ball to his natural side since the motions involved are obviously more suited to his footedness. But taking into account the possible strategies of the goalkeeper, there should not be a predictable pattern to his shots. He needs to shoot the ball to his unnatural side as well, and the proportion of balls kicked to his natural side to balls kicked to his unnatural side should be slightly greater than 1. 
Palacios-Huerta analyzed 1,417 penalty kicks taken between 1995 and 2000. Since penalty kicks are zero-sum games with multiple pure strategies and a finite number of players, Palacios-Huerta was able to conclude from the success rates in his data that there exists a Nash equilibrium, and that it is when the penalty taker kicks to his natural side 61.5% of the time, and the goalkeeper moves to the kicker's natural side 58% of the time. Mixed strategies in Nash equilibrium represent optimal strategies for each player involved; neither can gain from changing the proportion of any one pure strategy chosen over another. 
One very interesting observation he drew from this analysis was that good penalty takers and good goalkeepers, without any knowledge of the analysis, seemed to follow these strategies extremely closely. The penalty kickers Palacios-Huerta analyzed went to their natural side 60% of the time, while the goalkeepers he analyzed went to their opponent’s natural side 57.7% of the time. He further found that when the success rates of kicks in situations where penalty takers chose their natural sides are isolated, they did not differ from the success rates of kicks for which those players chose their non-natural sides. Additionally, Palacios-Huerta analyzed the sequences of experienced penalty takers' kicks, and concluded that there was no distinguishable pattern to any sequence he had analyzed; every decision was independent from the previous one, as if a player blindly drew a ball from a hat with 60 red balls and 40 yellow balls. The last two observations are concurrent with the prediction of games in which players have chosen strategies in Nash equilibrium.
However, Palacios-Huerta draws concerns that, since the penalty kicks he studied were not necessarily parts of penalty shoot-outs but were awarded far apart from each other for teams that drew fouls in the penalty area, perhaps the length of time passed in between those kicks account for the perceived randomness of choice in their directions, because that would make forgetting their last kicks easier for the players.

Setting goals
	Making sure I am cooperating with the more general goals of agent-based models, my goal has been to create a model which can replicate the data discussed based on interactions and learning among agents – the goalkeepers, the kickers, and the ball – without logical structures which produce decisions based on a priori knowledge of success rates. 
Firstly, I set out to replicate the physics involved in real-life penalty kicks.
Secondly, I made the environment of the model to be conducive to modeling agent cognitions and interactions.
Thirdly, fields that would be important to the analysis of results, for both post-run empirical analysis and providing information for other agents, were implemented.
Lastly, I set out to discover and write algorithms for agent learning which would best replicate Palacios-Huerta’s findings through patches and turtles.

How I went about that
The physics of a penalty kick is implemented as follows. Each patch is scaled to represent a single cubic foot. The patches imitate a three-dimensional experience of a penalty area. The goal is 24 patches wide, and the ball stands 36 patches away from the goal. A number (set by the slider num-takers) of penalty kickers line up on a side of the field, as do a number (num-takers + 1, to avoid a bijective mapping of each keeper and each taker) of goalkeepers on the other side. They are in queues; before each kick an enqueue function queues the agents who were previously playing to the tails of their queues, and then a dequeue function draws the players at the head of the queue into the game. Every player is six feet tall, and thus is of size 6. The ball is of size 0.75, which is, again, to proportion. 
	During set-up, decision functions are called for both the keeper and the taker in play. For the keeper, this sets his heading towards either his left or his right, and how much he is committed to the dive. The penalty taker does nothing physically during a game, but has several fields associated with him for data and analysis. For him, the set-up firstly decides whether the ball will travel left or right, and sets the angle of the ball, which is randomly chosen but ensures that the ball will land in the correct side. The height of the ball in a shot is randomly chosen. The upper limits on the horizontal and vertical angles of the ball in relation to the ground are set such that there is a chance the ball completely misses the goal. The ball travels at least four times as fast as the keeper when it is kicked to the natural side (the taker’s left), and at least three times as fast when it is kicked to the non-natural side. This is the only way the two decisions differ, but creates a large enough discrepancy between the effectiveness of each. A penalty kick is scored if the ball travels over the goal line and in between the goal posts, and the keeper fails to save it. The keeper saves the ball if the ball travels in between the posts but is within a distance of 2 to the keeper. A soccer ball, on average, takes 0.3 seconds to travel the distance of a penalty kick, whereas a goalkeeper’s reaction time to the flight of the ball is around 0.22 seconds on average. Taking this into account, when the soccer ball has traveled 26 feet from its origin, if the goalkeeper is already travelling in the same direction as the ball, the keeper reacts to the ball and faces towards it. When this happens his speed of movement increases and he makes the last stretch for the ball. The total number of misses, in addition to air-balls, includes these saves.
	Here are the decision matrices of data compiled by Palacios-Huerta and data produced by my model as explained, respectively side by side:
	T\G
	L
	R

	L
	58.30
	94.97

	R
	92.91
	69.92


	T\G
	L
	R

	L
	59.7
	92.0

	R
	96.3
	69.4



	 ‘L’ represents the players’ non-natural sides, ‘T’ is the penalty taker, and ‘G’ is the goalkeeper. The percentages represent success rates associated with kicks and save attempts towards certain sides. An obvious difference is noted here; Palacios-Huerta observed that the chance of scoring is higher when takers kicked to their non-natural sides than when takers kicked to their natural sides if the goalkeeper went the wrong way. This was unexplained by Palacios-Huerta, but two percent isn’t too much of a discrepancy between the two. It might be explained by the fact that I did not include the center side as being part of the right side, and in his data, success rates of kicks toward the center, albeit insignificant in sample size, were poor. In my model it is significantly easier to score if a kicker decides on his natural side while the keeper doesn’t, as opposed to deciding on his non-natural side.
	I struggled for a while in morally dealing with such issues. But I decided that my model’s implementation should be taken as being experimental, and not academically oriented towards a proof of game theory. I began coding the agents’ learning and decision structures with these numbers, and it’s not real anyways, thus how well the products of my model approximate real-life data and the statistical significance of the analysis I show in the interface are complete conjectures. The codes to my algorithms are real, though.

Agent cognition
	Several different lists of data (mostly of size memory-length * 2) are available to every agent. Each keeps record of their previous decisions and the results that came from those decisions. At the end of a kick, the keeper and the kicker also note their natural side tendencies in a list. Before a kick, a few of each player’s opponent’s data are available to him as well as ‘cheat-sheets’. They are each other’s lists of decisions and results, as would be available to players in real life.
	Two different kinds of cognition are implemented. Goalkeepers use an adaptive cognition as used in the El Farol model, with adaptations. In updating their best strategy, they compare each of their strategies by its score in predicting results for the past memory-size kicks, but the data available to make such predictions is not the penalty taker’s choices, but their choices only when they were successful. It is a list produced by bit masking the taker’s list of results (which is binary) over his list of choices (which is either -1 or 1, 1 being natural.) The prediction itself is compared to just the list of choices.
	Penalty takers use a goal-oriented cognition, which is much simpler. A taker, too, takes the list of choices and results of his opponent and bit masks the latter over the former. But he makes a decision simply by summing each element of that list. Note that a success means defeat to a goalkeeper, although it is noted as a 1 in his results. So this summing yields either a 0 or an integer whose sign represents the side on which he was defeated more times, and the penalty taker wishes to exploit that side. Yielding a 0 lets the taker make a random decision.
	These two strategies are different but oriented towards similar goals. The goalkeeper wishes to minimize the scoring rate of the penalty taker while the taker wishes to maximize it. 
The decision was made to have different cognitions for the different breeds solely based on the satisfaction I found in the data produced when they were used in conjunction.
	The two breeds do not learn together, because I have found it would be hard to implement algorithms which would work as such. Instead, one breed are ‘teachers’ while the other are ‘students.’ Which breed is set to which can be changed in the interface. Theoretically I did not find this to be a problem. The teacher setting makes either all goalkeepers or all penalty takers decide on the natural side by a set probability. This means that they are definitely making each decision independently from another, and so when the probability is set to an optimal number, if the other breed remains to make non-probabilistic decisions, the environment would remain a testable setting for the Nash equilibrium.

Analysis
	Players learn to choose their natural sides a bit – but still significantly – more than their non-natural sides when facing an opponent whose decision is optimal (55%-60%.) This is the highlight result of the model, and it satisfyingly approximates the mathematical predictions of Palacios-Huerta’s analysis of mixed-strategy play in Nash equilibrium.
Due to many lists using the memory-size slider that inadvertently affect the behavior of the model, such as the players’ choices and results being randomized to lists of size memory-size * 2 in set-up which may not yield great lists for the agents’ initial learning process, I could not pinpoint the exact consequence of that slider, but when set reasonably it seems to limit the deviation of choices. Increasing num-strategies seems to hasten the learning process. Because of the comparatively long running time of my model due to its complexity and graphics, I could not provide proof, possible with the use of BehaviorSpace, of these conjectures which I draw from my many manual runs of the model.
Within the code is my failed attempt at coding the equation provided by Palacios-Huerta, used to compute the probability of a sequence being non-random, by the measure of runs in the sequence. I’m not sure if he failed me or I’m failing, but I’m a math major, my equation is right, and it’s sure not replicating any of the numbers in his study.
The four monitors which report the isolated success rates according to footing can be used to compare results to the prediction of equal success rates among pure strategies.
In manual mode, users can test the model further by manually setting probabilities of choosing the natural side for both breeds, and by changing the power with which the ball moves when kicked with either left or right foot. For example, it might be useful to know what the total success rate is when all players choose their natural side 50% of the time.

Palacios-Huerta, 2003:
http://www.palacios-huerta.com/docs/professionals.pdf
