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	Technology designers, and the organizational leaders who choose to adopt new technologies want workers to take up such tools and use them to enhance—and often transform—their daily routines. In the press of daily work, however, new tools are often appropriated into existing routines with minimal change, or even abandoned entirely (Ansari, Fiss, & Zajac, 2010; Coburn, 2003; Cohen, 1988). Such outcomes can come as a surprise as well as a disappointment to leaders, designers, and workers alike. Indeed, even in cases where workers themselves are in favor of the changes new tools are designed to bring about, the phenomenon can persist. Paul Leonardi’s ethnographic work on the implementation of new crash-safety simulation technology in a large auto manufacturing company illustrates just such a situation (Leonardi, 2009, 2012). Although all of the crash-safety engineers he observed were sympathetic to the changes the new technology was intended to bring about, only some of them found ways to make use of the technology’s features, and in the end many abandoned it, returning to their existing working practices. Leonardi illuminates a set of dynamics that he argues are responsible for these mixed outcomes: the interrelation of what he terms “social interactions” and “material interactions” in shaping individuals’ perception of what a technology is good for, and ultimately their decision to use the technology or abandon it.
While Leonardi’s analysis is compelling for the specific case he observed, it is limited, as all observational studies are, in the extent to which it can address the generalizeability of the phenomenon it describes. In this paper I take Leonardi’s observations as a starting point. Using a series of agent-based models I seek to replicate and extend Leonardi’s findings, using the results of a series of simulated experiments to build theory about how the dynamics of social and material interaction shape the usage of new technologies under a variety of technological and organizational conditions.

Reference Pattern
	The technology at the heart of Leonardi’s case, software called CrashLab, was developed over the course of several years, led by a team of the company’s internal developers. The final software included features intended to satisfy the interests of a number of stakeholders including, the Safety Division, Global Technology Product Division, Information Systems and Services Division, and Research and Development Division. Among the primary goals of the technology was to help crash safety engineers standardize and automate relatively routine aspects of their work, so as to be able to spend more time on the aspects requiring more discretion and expertise. Since these latter aspects of the work were also more interesting, and more in line with engineers’ professional identities, such a shift would have been welcome. However, given the complexity of the software, and the multiple purposes it held, the specific ways that crashworthiness engineers could have used the technology in order to change their work flow in this particular way were far from readily apparent. Recognizing a need for guidance, the company provided a modest amount of training on how to use the technology. However, even with this guidance, Leonardi describes how two different groups of crashworthiness engineers (which he calls the Piston and Strut groups) came to understand the technology, and ultimately to use (or not use) it in very different ways.
Members of both the Strut and Piston groups participated in training on how to use the technology. However their sessions differed slightly and resulted in different expectations about what the technology could and should be used for. Their subsequent conversations with other members of the group (social interactions) and experiences attempting to use the technology (material interactions) led to widely divergent outcomes. 
Members of the Piston group left the training with the (somewhat fuzzy) impression that the purpose of the technology was to help speed up a particular aspect of their work. As they talked with one another, this impression developed into a clear and broadly held expectation for what the technology would afford. However, as these engineers worked with the technology itself they became increasingly frustrated, finding that using the new tool did not in fact seem faster than their existing approaches. (And indeed, as a direct replacement for existing tools, without making use of the possibilities for standardization, the technology’s designers did not create it with speed in mind). With their expectation for the technology’s affordances disappointed, new expectations that CrashLab was not good for speeding up work were shared via social interaction, creating a growing sense that the technology was not useful at all. At the end of Leonardi’s observation period members of the Piston group had largely abandoned Crash Lab. 
	The Strut group came away from the training with an even less clear sense of what the technology was primarily intended for. They were told that they ought to use the new tool, but provided with only very general direction as to how it might be useful. Given this uncertainty members of the Strut group explored the tool’s capabilities by interacting with the software directly. As individuals found particular capabilities that they deemed useful, they shared this information with one another. At the end of Leonardi’s observation period, most members of the Strut Group were using Crash Lab, at least some of the time.
	For purposes of developing the agent-based models, I abstract these two outcomes into two broad reference patterns:

1) People begin with a widespread expectation that the technology affords something it does not. In the end, most people abandon the technology.
2) People begin without clear expectations of what the technology affords. In the end most people use the technology.

Agent-Based Models
	In order to explore the conditions that give rise to these reference patterns I constructed three agent-based models of increasing complexity. Agent-based models differ from other types of computer modeling techniques in that, rather than programming in the outcome pattern, they are programmed with a set of agents following simple rules(Wilensky & Rand, in press). The reference pattern is (or is not) matched through the interaction of these agents over time. All models in this study were constructed using NetLogo (Wilensky, 1999). 
Model A
Agents and Rules
In Model A I attempt to replicate the two reference patterns with as simple a set of agents and rules as possible. These are summarized in Table 1.

Table 1: Model A - Agents and Rules 
	Agents:
	People
	Technologies

	Attributes:
	Expectations
Usage
Persistence
	Affordances

	Starting Conditions:
	Create 0-400 people, each with: 
· Starting expectations of “a,” “b,” both, or neither
· No usage
· Persistence of 1000 (“unlimited”) or 3 (“limited”)
	Create 1 technology with affordances “a,” “b,” both, or neither

	Rules:
	· Random movement
· Proximity to another person  take-up of any new expectations
· Proximity to the technology  use based on expectations (if expectations are negative, nothing attempted)
· No expectations  take-up of one affordance into expectations
	



The agents in this model are called people and technologies,[footnoteRef:1] to represent the employees of an adopting organization and the new technology they encounter. People in this model have three important attributes. First, people hold a set of expectations about what the technology affords. These include both a set of features (“a”, “b”, both, or neither) and a valence for each feature present (1 or -1). A valence of 1 represents a belief that the technology does afford that feature. A valence of -1 represents a belief that the technology does not afford that feature. People can also lack any expectation for a particular feature. Second, people hold a usage, which refers to the features of the technology that they use. Usage can also take values of “a,” “b,” both or neither, however it does not hold valence. Third, people hold a level of persistence. This refers to how many times people will interact with the technology before their expectations and usage become permanently fixed.  [1:  For convenience and visual clarity, people hold their expectations about the technology both as a direct attribute, and also in the form of a small network of color-coded “expectation” agents. However, since these two forms of information are fully redundant, and conceptually expectations are attributes of people rather than their own autonomous actors, I don’t count expectations as their own type of agent here.
] 

The technology (there is never more than one technology in a given simulation) holds one important attribute: its affordances. The technology’s set of affordances takes a parallel form to people’s expectations, with features of “a”, “b”, both, or neither, although if a particular feature is present its valence is always positive. While people’s expectation, and usage change over the course of a simulation, a technology’s affordances remain static.
Before the model begins, the user must select a set of affordances for the technology. She also selects the number of people who will start with expectations of “a,” “b,” both, or neither. All starting expectations are positive. Optionally she can turn on “limited-persistence” which sets starting persistence at 3 for all people. When “limited persistence” is off, people start with a persistence of 1000—an arbitrarily high number.
	When the model begins, each person follows the following rules at each tick:

1. Turn a little and take a step forward 
2. If I am close to any other agents (people or technology) and my persistence has not run out, pick a nearby agent to interact with
a. If I am interacting with another person who has an expectation about a feature I didn’t know about, take on that person’s expectation
b. If I am interacting with the technology, try to use it for one thing I expect it will be able to do
i. If that feature is among the technology’s affordances, add it to my usage 
ii. If not, change my expectations to not believing the technology affords that feature
iii. If I have no expectations, learn one feature from the technology itself (the same way I would from a person)
iv. Increment my persistence down
v. (If I have only negative expectations do nothing)

Experiments
	In order to explore the boundaries of this model’s ability to match the reference patterns above, I conducted a series of simulated experiments using the BehaviorSpace function of NetLogo. In each experiment below, the technology affords “a,” the model begins with 100 people, and limited persistence is on. Each set of conditions was run 20 times. Cells shaded in gray indicate conditions where the reference pattern was not matched.
	Table 2 summarizes the results of a set of experiments exploring the model’s ability to replicate Reference Pattern 1: a widespread incorrect expectation leading to widespread abandonment.

Table 2: Model A - Reference Pattern 1
	Experiment
	% People with Starting Expectations
	Mean % Abandoning Tech
	Min. % Abandoning
Tech
	Max. % Abandoning Tech
	Proportion Runs with All Abandoning Tech

	
	“a”
	“b”
	none
	
	
	
	

	

	A.1.a
	0
	100
	0
	100
	100
	100
	1

	

	A.1.b
	1
	99
	0
	24.25
	13
	39
	0

	
	5
	95
	0
	12.8
	4
	20
	0

	

	A.1.c
	0
	99
	1
	100
	100
	100
	1

	
	0
	95
	5
	80.35
	17
	100
	0.75

	
	0
	90
	10
	85.15
	21
	100
	0.8

	
	0
	85
	15
	79.45
	15
	100
	0.75

	
	0
	80
	20
	39.7
	8
	100
	0.25

	
	0
	75
	25
	41.25
	9
	100
	0.25

	



As experiment A.1.a indicates, if everyone in the model starts with an incorrect expectation, all of them will eventually abandon the technology. Under these starting conditions, reference pattern 1 is easily matched.
If most people start with incorrect expectations, and a small number of people start with correct impressions, the model’s final conditions are quite different. As experiment A.1.b indicates, with 1 person expecting “a” and the rest expecting “b,” on average only 24 people end up abandoning the technology—all the rest learn the correct expectations from one another and ultimately use the technology. If 5 people start expecting a, and the rest b, on average only 13 people abandon the technology. Thus, if even a very small number of people start with correct expectations for what the technology does, Reference Pattern 1 cannot be matched in Model A.
When most people start expecting “b” but some start without any expectations, the results fall into two very distinct outcomes. Either everyone abandons the technology, or most people use it. The proportion of runs in which 100% of people abandon the technology is indicated in the final column of Table 2. As experiment A.1.c indicates, this proportion changes with the percentage of individuals who begin without expectations. When the percentage of people beginning without expectations reaches 20%, the proportion of runs in which everyone abandons the technology falls to well under .5. Thus, although Reference Pattern 1 can be matched in this model when starting conditions include some people without any expectations, this only occurs more than half of the time when more than 80% of people begin with incorrect expectations.

	Table 3 summarizes the results of a similar set of experiments testing the boundaries of the model’s ability to replicate Reference Pattern 2: widespread absence of expectations leading to widespread usage.

Table 3: Model A - Reference Pattern 2
	Experiment
	% People with Starting Expectations
	Mean % Using Tech
	Min. % Using Tech
	Max. % Using Tech
	Proportion Runs with All Abandoning Tech

	
	“a”
	 “b”
	 none
	
	
	
	

	

	A.2.a
	0
	0
	100
	100
	100
	100
	0

	

	A.2.b
	0
	1
	99
	99.05
	96
	100
	0

	

	A.2.c
	0
	50
	50
	80.5
	0
	93
	0.05

	
	0
	60
	40
	73.45
	0
	94
	0.1

	
	0
	70
	30
	69.6
	0
	92
	0.15

	
	0
	80
	20
	43.6
	0
	91
	0.45

	



As with Reference Pattern 1, when starting conditions are uniform, so is the outcome, and reference pattern 2 is easily matched. That is, as experiment A.2.a. indicates, when no one starts with any expectations, everyone eventually uses the technology. 
Unlike for Reference Pattern 1, where adding one individual with a different starting expectation dramatically changes the outcome, Reference Pattern 2 is extremely robust. As experiment A.2.b. indicates, adding one individual who starts expecting “b” has very little impact on the outcome—the reference pattern is still easily matched. Indeed, as experiment A.2.c indicates, not until more than 70% of people start expecting “b” do less than half of people end up using the technology.[footnoteRef:2] [2:  In fact, the runs shown in experiment A.2.c arguably do not match Reference Pattern 2 not because of their outcomes, but because of their starting conditions. In Leonardi’s case the absence of clear starting expectations was quite widespread—30% may not “count” as a reasonable instantiation of this. Regardless, experiment A.2.c remains useful for the purposes of this paper because it illuminates the starting conditions where the Model A stops leading to widespread usage of the technology.] 

Analysis
Overall, Model A easily matches the outcomes demonstrated in Leonardi’s case when the starting conditions are uniform. However, looking for the boundary conditions of these patterns also sheds light on some important aspects of the model’s functioning more broadly, and points towards aspects that might be improved with a bit more complexity.
Reference Pattern 1—incorrect expectations leading to widespread abandonment—was very sensitive to starting conditions. Although adding a handful of people who had no starting expectations did not change the outcome much, even a single individual who started with correct expectations about the technology’s affordances radically changed the overall outcome. It is possible that this sensitivity is a bit more extreme than is realistic. After all, many innovations fail to take hold broadly—is it really true in all of those cases that not a single person in the organization had correct expectations for what the tool could do? This also highlights the fact that in this model, new ideas spread very rapidly (so that the presence of a single correct expectation is very significant), but existing expectations are modified very slowly. In fact, social interactions cannot affect existing expectations at all—only material interactions can do that. This seems like an excessively constrained role for social interaction.
Reference Pattern 2—the absence of starting expectations leading to widespread usage—was quite robust. Even adding people with starting expectations that are incorrect only modestly reduced the number of people who ended up using the technology in most cases. Indeed under this model, people are no more likely to use the technology correctly if they all start off knowing exactly what it does, than if they all start off knowing nothing about it. While Leonardi’s observations indicate indicates that the absence of expectations can lead to widespread usage, this seems like an excessively powerful positive role for the absence of expectations to play.
In addition, under this model, people can only learn from the technology when they have absolutely no expectations for what it does. It doesn’t seem clear why people’s response should be so categorically different in this situation, when we know that people do play around with new tools in order to try to learn their other features. Finally, in this model, all that people need to end up using the technology is to develop an accurate expectation for what it should be able to do. This may be excessively optimistic—surely people sometimes decline to use a technology for other reasons. 
To address these issues, I modified Model A, creating Model B.

Model B
Agents and Rules.
The agents and rules for Model B are summarized in Table 4. Differences between Model B and Model A are in bold. Model B differs from Model A in four ways:
1. People learn incrementally, strengthening or weakening their existing expectations rather than only learning totally new features from others.
2. The technology is not necessarily fully transparent. A slider lets the user select the chance that a person with no expectations will learn one of the technology’s affordances.
3. Optionally: can-learn-unexpectedly can be turned on, which introduce some randomness so that a person trying to use technology can also learn from it, occasionally. Specifically, a person who already holds one or more expectations about the technology has approximately a 5% chance of trying learn from the technology (in the same way he would if he had no expectations) before trying to use it.
4. Optionally: use-can-fail can be turned on, introducing some randomness so that a person trying to use technology isn’t always successful even if she knows what it is for. Specifically a person who holds a correct expectation about what the technology affords has approximately a 5% chance of coming to the (incorrect) conclusion that the technology does not actually afford what she expected.

Table 4: Model B - Agents and Rules 
	Agents:
	People
	Technologies

	Attributes:
	Expectations
Usage
Persistence
	Affordances

	Starting Conditions:
	Create 0-400 people, each with: 
· Starting expectations of “a,” “b,” both, or neither
· No usage
· Persistence of 1000 (“unlimited”) or 3 (“limited”)
	Create 1 technology with affordances “a,” “b,” both, or neither

	Rules:
	· Random movement
· Proximity to another person  adjust expectations towards theirs
· Proximity to the technology  
· If unexpected learning is on then perhaps (according to tech transparency) take up one affordance into expectations 
· Use (or probably use, if use-can-fail is on) based on expectations (if expectations are negative, nothing attempted)
· No expectations  perhaps (according to tech transparency) take up one affordance into expectations
	



Experiments
	In order to examine how these changes affect the model’s ability to match the two reference patterns, I conducted a series of BehaviorSpace experiments comparable to those conducted on Model A. As before, in each experiment, the technology affords “a,” the model begins with 100 people, and limited persistence is turned on. As an added condition for Model B, the technology’s transparency is set to .1. Again, each set of conditions was run 20 times and cells shaded in gray indicate conditions where the reference pattern was not matched.
	The results of the experiments testing the boundaries of Model B’s ability to match Reference Pattern 1, incorrect expectations leading to abandonment, are displayed in Table 5.

Table 5: Model B - Reference Pattern 1
	Exp.
	% People with Starting Expectations
	Use Can Fail
	Can Learn Un-expectedly
	Mean % Abandoning Tech
	Min. % Abandoning Tech
	Max. % Abandoning Tech
	Proportion Runs with All Abandoning Tech

	
	“a”
	 “b”
	 none
	
	
	
	
	
	

	

	B.1.a
	0
	100
	0
	off
	off
	100
	100
	100
	1

	
	0
	100
	0
	off
	on
	82.15
	31
	100
	0.7

	
	0
	100
	0
	on
	off
	100
	100
	100
	1

	
	0
	100
	0
	on
	on
	81.2
	36
	100
	0.65

	

	B.1.b
	1
	99
	0
	off
	off
	24.6
	11
	39
	0

	
	1
	99
	0
	off
	on
	20.9
	11
	30
	0

	
	1
	99
	0
	on
	off
	33.3
	21
	100
	.05

	
	1
	99
	0
	on
	on
	33.85
	16
	56
	0

	
	
	
	
	
	
	
	
	
	

	
	5
	95
	0
	off
	off
	12.3
	7
	21
	0

	
	5
	95
	0
	off
	on
	12.8
	6
	20
	0

	
	5
	95
	0
	on
	off
	22.6
	15
	34
	0

	
	5
	95
	0
	on
	on
	23.95
	11
	39
	0

	

	B.1.c
	0
	70
	30
	off
	off
	72.25
	14
	100
	0.65

	
	0
	70
	30
	off
	on
	53.6
	10
	100
	0.35

	
	0
	70
	30
	on
	off
	86.35
	21
	100
	0.8

	
	0
	70
	30
	on
	on
	72.25
	14
	100
	0.65

	
	
	
	
	
	
	
	
	
	

	
	0
	60
	40
	off
	off
	81.4
	22
	100
	0.75

	
	0
	60
	40
	off
	on
	51.8
	12
	100
	0.3

	
	0
	60
	40
	on
	off
	90.2
	28
	100
	0.85

	
	0
	60
	40
	on
	on
	66.4
	20
	100
	0.45

	
	
	
	
	
	
	
	
	
	

	
	0
	50
	50
	off
	off
	68.45
	15
	100
	0.6

	
	0
	50
	50
	off
	on
	54.3
	14
	100
	0.35

	
	0
	50
	50
	on
	off
	68.25
	22
	100
	0.55

	
	0
	50
	50
	on
	on
	49.5
	24
	100
	0.25

	
	
	
	
	
	
	
	
	
	

	
	0
	40
	60
	off
	off
	51.3
	13
	100
	0.4

	
	0
	40
	60
	off
	on
	50.4
	13
	100
	0.3

	
	0
	40
	60
	on
	off
	61.8
	24
	100
	0.45

	
	0
	40
	60
	on
	on
	61.45
	18
	100
	0.45

	
	
	
	
	
	
	
	
	
	

	
	0
	30
	70
	off
	off
	40.05
	12
	100
	0.25

	
	0
	30
	70
	off
	on
	40.9
	11
	100
	0.25

	
	0
	30
	70
	on
	off
	53.35
	17
	100
	0.35

	
	0
	30
	70
	on
	on
	52.95
	27
	100
	0.25

	



 
As in Model A, Reference Pattern 1 is readily matched when all people start with incorrect expectations. Turning on use-can-fail has no appreciable effect on the outcome. Turning can-learn-unexpectedly on reduces the percentage of people abandoning the technology in the end by almost 20%, but the overwhelming majority of people nonetheless end up not using the technology.
Also like in Model A, adding even a small number of people starting with correct expectations results in a precipitous drop in the number of people ultimately abandoning the technology. Indeed the runs in experiment B.1.b with use-can-fail off yield almost identical results to similar conditions in Model A (shown above in Table 2, Experiment A.1.b): 21-25 in B.1.b compared to 24 in A.1.b when 1 person starts expecting “a” and the rest expect “b”, and 12-13 in B.1.b compared to 13 in A.1.b with 5 people expecting “a” and the rest expecting “b.” In experiments B.1.b, turning use-can-fail on, does result in a substantial increase in the number of people who ultimately abandon the technology. However, this number stays well below half even in those cases, so the reference pattern is still not met.
Model B differs from Model A somewhat more in the percentage of people who can start without expectations and have the model still lead to widespread abandonment. This is also substantially affected by whether use-can-fail and can-learn-unexpectedly are turned on or off. For example when both use-can-fail and can-learn-unexpectedly are turned on, anything more than 30% of people starting without expectations means that widespread abandonment takes place less than half the time. When both are off, widespread false expectations continue to lead to widespread abandonment until more than 50% of people start without any expectations. The same threshold is reached at 20% of people starting without expectations in Model A. 

	A similar set of experiments testing the boundaries of Model B’s ability to match Reference Pattern 2, no expectations leading to usage, is shown in Table 6.

Table 6: Model B - Reference Pattern 2
	Exp.
	% People with Starting Expectations
	Use Can Fail
	Can Learn Un-expectedly
	Mean % Using Tech
	Min. % Using Tech
	Max. % Using Tech
	Proportion Runs with All Abandoning Tech

	
	“a”
	 “b”
	 none
	
	
	
	
	
	

	

	B.2.a
	0
	0
	100
	off
	off
	87.55
	74
	95
	0

	
	0
	0
	100
	off
	on
	89.3
	84
	94
	0

	
	0
	0
	100
	on
	off
	76.9
	68
	88
	0

	
	0
	0
	100
	on
	on
	76.6
	59
	85
	0

	

	B.2.b
	0
	1
	99
	off
	off
	86.25
	74
	94
	0

	
	0
	1
	99
	off
	on
	87.3
	75
	97
	0

	
	0
	1
	99
	on
	off
	72.3
	0
	89
	0.05

	
	0
	1
	99
	on
	on
	71.15
	3
	86
	0

	

	B.2.c
	0
	10
	90
	off
	off
	77.3
	0
	91
	0.05

	
	0
	10
	90
	off
	on
	74.05
	32
	91
	0

	
	0
	10
	90
	on
	off
	67.3
	4
	84
	0

	
	0
	10
	90
	on
	on
	67.5
	19
	82
	0

	
	
	
	
	
	
	
	
	
	

	
	0
	20
	80
	off
	off
	66.7
	0
	89
	0.2

	
	0
	20
	80
	off
	on
	73.85
	0
	86
	0.05

	
	0
	20
	80
	on
	off
	42.2
	0
	82
	0.4

	
	0
	20
	80
	on
	on
	56.3
	0
	80
	0.1

	
	
	
	
	
	
	
	
	
	

	
	0
	30
	70
	off
	off
	50.55
	0
	89
	0.25

	
	0
	30
	70
	off
	on
	61.9
	0
	89
	0.05

	
		0
	30
	70
	on
	off
	39.9
	0
	84
	0.4

	
	0
	30
	70
	on
	on
	64.15
	0
	81
	0.05

	
	
	
	
	
	
	
	
	
	

	
	0
	40
	60
	off
	off
	42.65
	0
	87
	0.45

	
	0
	40
	60
	off
	on
	66.6
	32
	87
	0

	
	0
	40
	60
	on
	off
	40.85
	0
	75
	0.4

	
	0
	40
	60
	on
	on
	53.35
	0
	81
	0.1

	



Like in Model A, when all or almost all people begin without starting expectations, a comfortable majority of people almost always end up using the technology. Turning use-can-fail-on reduces the number of people who end up using the technology. Turning on can-learn-unexpectedly seems to have little impact on the results. The results of Experiments B.2.a and B.2.b with averages between 71% and 88% of people using the technology are less uniform than their Model A counterparts (A.2.a and A.2.b) which averaged between 99% and 100% of people using the technology. Nonetheless the match to the reference pattern remains strong.
Experiment B.2.c shows a wider range of outcomes. With use-can-fail on and can-learn-unexpectedly off, having 20% or more of people start with incorrect expectations leads to less than half of people using the technology in the end. That is, under these starting conditions the model does not match the reference pattern. However, at the same proportions of starting expectations, other configurations of use-can-fail and can-learn-unexpectedly still match the reference pattern. When 40% or more of people start with incorrect expectations, less than half of people end up using the technology any time unexpected learning is turned off (whether imperfect use is turned on or off).
Analysis
Overall, the differences in behavior between Model B and Model A were quite modest. Of the changes introduced—making expectations more modifiable, reducing the technology’s transparency, and adding the possibilities of unexpected learning, or unreliable usage, most showed evidence of having some effect on outcomes. With incremental expectation changes and the technology’s transparency reduced, but no other changes from Model A (i.e. Model B runs with use-can-fail and can-learn-unexpectedly turned off), people generally tend to abandon the technology more often. Turning use-can-fail on also tends to mean that fewer people ended up using the technology, while turning can-learn-unexpectedly on tends to increase the number of people using the technology. However, none of these changes make substantial qualitative differences in the patterns of matching or not matching the reference patterns from Leonardi’s case study. Reference Pattern 2—a lack of expectations leading to widespread usage—remains quite robust, especially with unexpected learning turned on. Reference pattern 1—widespread incorrect expectations leading to widespread abandonment—remains extremely sensitive to the presence of even one person with correct expectations. 
	In both Models A and B, people’s interactions with one another and with the technology are dependent on running into other agents during random movement through the world. However, this approach downplays the patterned ways that people are connected to those around them, interacting with some people far more than others. 
	I address this important limitation by introducing social network ties in Model C. 

Model C
Agents and Rules
	The agents and rules for Model C are summarized in Table 7. Differences between Model C and Model B are in bold. 
The most important difference between Model C and the previous models is that rather than encountering others by moving randomly around the world, people are linked together in a social network. The network is designed to mimic the organization of a workplace. It is created in three steps: first, each person is assigned to be a member of 1-3 different work teams, each of which have between 2-5 members. Second, 10% of people create random additional links to others in the network. Third, any disconnected components are connected to the larger network. The result is intended to roughly represent the aggregation of formal and informal relationships in a moderate-to-large organization, such as the one Leonardi studied. Because people are primarily connected to a relatively small number of others nearby to them but also have some cross-network ties, the network has small world properties.
	Using a network structure is a more realistic model of an organization than random movement. It also allows for more control over both starting conditions and agent behavior.
	Previous experiments demonstrated that a very small number of people’s expectations can dramatically change the outcome of a model run. As a way to further explore the role of a few significant individuals, in Model C, a user can opt to change people’s starting expectations based on their network centrality. Specifically, the user can opt to switch either 1 or 5 people to starting expectations of “a” or “b” who are either at the top, bottom, or middle of the eigenvector centrality distribution. I chose eigenvector centrality because it is a way of capturing an individual’s overall influence on a network (Hanneman & Riddle, 2005). 
	In Model C, the proportion of material vs. social interactions is also controlled by the user. Calculations from previous models showed that for a model with 100 people, approximately 95% of people’s interactions were with other people, and 5% of interactions were with the technology. While this was achieved “mechanically” in the previous models (i.e. simply as a result of the likelihood of bumping into others vs. the technology), in Model C it is programmed into the agents’ rules. In order to keep the model from running too fast, the average proportion of people being influenced per tick (approximately 25%) was also taken from Model B. 

Table 7: Model C - Agents and Rules 
	Agents:
	People
	Technologies

	Attributes:
	Expectations
Usage
Persistence
	Affordances

	Starting Conditions:
	Create 0-400 people, each with: 
· Starting expectations of “a,” “b,” both, or neither
· No usage
· Persistence of 1000 (“unlimited”) or 3 (“limited”)
Create network ties grouping people into overlapping small teams
Change a number of people’s starting expectations based on their eigenvector centrality
	Create 1 technology with affordances “a,” “b,” both, or neither

	Rules:
	· Every few ticks, people interact with either a person or the technology (in the proportion of material (vs. social) influence chosen)
· Interacting with another person  adjust expectations towards theirs
· Interacting with the technology  
· If unexpected learning is on then perhaps (according to tech transparency) take up one affordance into expectations 
· Use (or probably use, if use-can-fail is on) based on expectations (if expectations are negative, nothing attempted)
No expectations  perhaps (according to tech transparency) take up one affordance into expectations
	



Experiments
Model C is designed to be able to operate very similarly to Model B. The results of BehaviorSpace experiments intended to replicate experiments B.1.a-c, and B.2.a-c are below, in Tables 8 and 9. In each of the conditions shown, the technology affords “a,” the model begins with 100 people, the technology transparency is set to .1, and limited persistence use-can-fail, and can-learn-unexpectedly are turned on. In the Model C experiments, proportion-material-influence is set to .05, and add-#-eigenvector is set to “off.” As before, each set of conditions was run 20 times and cells shaded in gray indicate conditions where the reference pattern was not matched.

Table 8: Models B and C - Reference Pattern 1
	Exp.
	% People with Starting Expectations
	Use Can Fail
	Can Learn Un-expectedly
	Mean % Aband. Tech
	Min. % Aband. Tech
	Max. % Aband. Tech
	Proportion Runs with All Abandoning Tech

	
	“a”
	 “b”
	 none
	
	
	
	
	
	

	

	B.1.a
	0
	100
	0
	on
	on
	81.2
	36
	100
	0.65

	
	
	
	
	
	
	
	
	
	

	C.1.a
	0
	100
	0
	on
	on
	81.25
	26
	100
	0.65

	

	B.1.b
	1
	99
	0
	on
	on
	33.85
	16
	56
	0

	
	5
	95
	0
	on
	on
	23.95
	11
	39
	0

	
	
	
	
	
	
	
	
	
	

	C.1.b
	1
	99
	0
	on
	on
	22.4
	6
	52
	0

	
	5
	95
	0
	on
	on
	14.75
	3
	37
	0

	

	B.1.c
	0
	70
	30
	on
	on
	72.25
	14
	100
	0.65

	
	0
	60
	40
	on
	on
	66.4
	20
	100
	0.45

	
	0
	50
	50
	on
	on
	49.5
	24
	100
	0.25

	
	
	
	
	
	
	
	
	
	

	C.1.c
	0
	70
	30
	on
	on
	71.05
	14
	100
	0.55

	
	0
	60
	40
	on
	on
	69.85
	10
	100
	0.55

	
	0
	50
	50
	on
	on
	60.3
	16
	100
	0.45

	




Table 9: Models B and C - Reference Pattern 2
	Exp.
	% People with Starting Expectations
	Use Can Fail
	Can Learn Un-expectedly
	Mean % Using Tech
	Min. % Using Tech
	Max. % Using Tech
	Proportion Runs with All Abandoning Tech

	
	“a”
	 “b”
	 none
	
	
	
	
	
	

	

	B.2.a
	0
	0
	100
	on
	on
	76.6
	59
	85
	0

	
	
	
	
	
	
	
	
	
	

	C.2.a
	0
	0
	100
	on
	on
	91.25
	84
	96
	0

	

	B.2.b
	0
	1
	99
	on
	on
	71.15
	3
	86
	0

	
	
	
	
	
	
	
	
	
	

	C.2.b
	0
	1
	99
	on
	on
	82.35
	54
	96
	0

	

	B.2.c
	0
	10
	90
	on
	on
	67.5
	19
	82
	0

	
	0
	20
	80
	on
	on
	56.3
	0
	80
	0.1

	
	0
	30
	70
	on
	on
	64.15
	0
	81
	0.05

	
	0
	40
	60
	on
	on
	53.35
	0
	81
	0.1

	
	
	
	
	
	
	
	
	
	

	C.2.c
	0
	10
	90
	on
	on
	49.85
	0
	91
	0.3

	
	0
	20
	80
	on
	on
	55.55
	0
	94
	0.2

	
	0
	30
	70
	on
	on
	41.5
	0
	92
	0.35

	
	0
	40
	60
	on
	on
	50.85
	0
	92
	0.2

	



As Tables 8 and 9 show, Model C comes very close to replicating the outcomes demonstrated by Model B. Experiments C.1.a, C.1.b, and C.1.c are intended to replicate Reference Pattern 1—widespread incorrect expectations leading to widespread abandonment of the technology. Experiment C.1.a, with 100% of people starting with incorrect expectations, is virtually identical in outcome to B.1.a: both had a mean of 81% people abandoning the technology, with 65% of runs ending in total abandonment. In experiment C.1.b., with most people expecting “b” but 1 or 5 people expecting “a”, the numbers ultimately abandoning are a bit lower than their counterparts in experiment B.1.b: 22-15% compared to 34-24%. However the general pattern—few people abandoning the technology, despite widespread incorrect expectations—remains the same. In experiment C.1.c., with 30, 40, or 50 people beginning without expectations (and the rest expecting “b”), the mean abandonment and proportion of runs with full abandonment jump around a bit, with some being virtually identical to their counterparts in B.1.c, some higher, and some lower. Still again, the trends and approximate values of the results are similar.
Experiments C.2.a, C.2.b and C.2.c were designed to replicate Reference Pattern 2: widespread absence of expectation leading to widespread usage of the technology. In experiments C.2.a, and C.2.b, the mean number of people using the technology at the end of the runs were somewhat higher than their counterparts B.2.a, and B.2.b: 91 and 82, compared to 71 and 77, respectively. The mean percentages using the technology in experiment C.2.c were somewhat higher than its counterpart, B.2.c., ranging from 68-53 and 55-41 respectively. Again, although the match is not perfect, the overall trends remained similar.

In addition to replicating previous experiments, Model C allows for a closer investigation of the role of a small number of individuals in effecting model-wide change. Specifically I investigated the conditions where Reference Pattern 1 could not be matched with either Models A or B: widespread incorrect expectations with a very small number of correct expectations leading (or, as in Experiments A.1.b, and B.1.b, not leading) to widespread abandonment.
Table 10 shows the results of this exploration. As before, the technology affords “a”, the model begins with 100 people, the technology transparency is set to .1, and limited persistence use-can-fail, and can-learn-unexpectedly are turned on. However, using the add-#-eigenvector function, either 1 or 5 people were chosen to expect “a” based on having low, average, or high eigenvector centrality scores. Material influence was also varied from .05 as in the previous experiments down to .01 and up to .20, meaning that for every interaction a person has there is a 5%, 1%, or 20% chance of it being a “material interaction”, rather than with a “social interaction.” As before, each set of conditions was run 20 times and cells shaded in gray indicate conditions where the reference pattern was not matched.

Table 10: Models B and C - Reference Pattern 1
	Exp.
	% People with Starting Expectations
	Eigenvector Centrality of “a” Expectors 
	% Material Influence
	Mean % Aband. Tech
	Min. % Aband. Tech
	Max. % Aband. Tech
	Proportion Runs with All Aband. Tech

	
	“a”
	 “b”
	 none
	
	
	
	
	
	

	

	B.1.b
	1
	99
	0
	--
	--
	33.85
	16
	56
	0

	
	5
	95
	0
	--
	--
	23.95
	11
	39
	0

	
	
	
	
	
	
	
	
	
	

	C.1.b.i
	1
	99
	0
	low
	5
	42.9
	11
	100
	0.15

	
	1
	99
	0
	average
	5
	26.7
	11
	74
	0

	
	1
	99
	0
	high
	5
	18.5
	8
	40
	0

	
	
	
	
	
	
	
	
	
	

	
	5
	95
	0
	low
	5
	20.65
	7
	46
	0

	
	5
	95
	0
	average
	5
	14.05
	7
	30
	0

	
	5
	95
	0
	high
	5
	10.3
	5
	19
	0

	
	
	
	
	
	
	
	
	
	

	C.1.b.ii
	1
	99
	0
	low
	1
	31.1
	4
	100
	0.2

	
	1
	99
	0
	average
	1
	16.6
	7
	100
	0.05

	
	1
	99
	0
	high
	1
	9.95
	4
	19
	0

	
	
	
	
	
	
	
	
	
	

	
	5
	95
	0
	low
	1
	11.9
	6
	32
	0

	
	5
	95
	0
	average
	1
	11.75
	7
	17
	0

	
	5
	95
	0
	high
	1
	11.4
	7
	17
	0

	
	
	
	
	
	
	
	
	
	

	C.1.b.iii
	1
	99
	0
	low
	20
	90.55
	75
	99
	0

	
	1
	99
	0
	average
	20
	79.45
	59
	98
	0

	
	1
	99
	0
	high
	20
	72.8
	53
	94
	0

	
	
	
	
	
	
	
	
	
	

	
	5
	95
	0
	low
	20
	76
	58
	91
	0

	
	5
	95
	0
	average
	20
	63.55
	34
	85
	0

	
	5
	95
	0
	high
	20
	44.15
	23
	65
	0

	
	
	
	
	
	
	
	
	
	



Experiment C.1.b.i is the most similar to C.1.b shown in Table 8. As in previous experiments, it shows that including a single or small number of people who have correct expectations for the technology’s affordances means that few people ultimately abandon the technology—that is, Reference Pattern 1 is not matched. However, it also demonstrates that the centrality of those individual(s) makes a substantial difference to just how rare abandonment is. The more central the starting “a expectors” are, the more this expectation spreads, and the fewer people abandon the technology. Especially in the case of only a single person expecting “a,” differences this person’s centrality make a substantial difference—on average more than twice as many people ultimately abandon the technology if the person who starts with a correct expectation has the model’s lowest eigenvector centrality as compared with the highest. Indeed in these low centrality conditions, even the person who began with correct expectations abandons the technology approximately 15% of the time.
In experiment C.1.b.ii, the proportion of material influence is reduced to 1%. Under these conditions, a similar pattern of outcomes occur to those from C.1.b.i, except that even fewer people abandon the technology. Under these conditions even an individual with average eigenvector centrality who starts expecting “a” occasionally ends up abandoning the technology.
In experiment C.1.b.iii, the proportion of material influence is increased to 20%. Under these conditions, unlike in experiments A.1.b, B.1.b, C.1.b, C.1.b.i, and C.1.b.ii, widespread incorrect expectations do lead to widespread abandonment, in almost every case. That is, Reference Pattern 1 is matched. The eigenvector centrality of those holding correct expectations still makes a difference with low centrality “a” expectors leading to the highest levels of abandonment. However, only with 5 of the most influential people holding the correct expectation do an average of less than half of people end up abandoning the technology.

Analysis
The similarity between the experiments conducted using Models B and C demonstrates that it is possible to capture some of the important characteristics of networked phenomena using a model of physical movement rather than the network structure. However, Experiments C.1.b.i-iii would have been very difficult to explore using the physical model. Network centrality, obviously, is difficult to explore without a network. The proportion of social vs. material interactions would also have been difficult to manipulate without also manipulating the number of people in the model, or other semi-independent features.
	Gaining the ability to explore the role of the relative frequency of social vs. material interactions turned out to be an especially valuable feature of Model C. Before conducting experiments C.1.b.i-iii, I assumed that increasing the proportion of material influences would increase the number of correct users of the technology. If abandonment stems from a lack of information about what the technology affords, surely more opportunity to learn from the technology would lead to better information. However, to my surprise, the opposite proved to be true. 
	Upon reflection I realized that this makes sense. In most cases, new positive expectations travel through social interactions. (Unless someone happens to learn unexpectedly, which has a 0.125% per person per tick chance of occurring in these models.) With an increase in the proportion of material interactions, people who start with incorrect expectations about the technology’s affordances are more likely to exhaust their persistence in interacting with the technology before the idea of an alternative possible affordance reaches them.
	In addition to being surprising, this result is also significant because increasing the proportion of material interactions is also the only model modification that had an effect on whether Reference Pattern 1 could be matched when one or more people began with correct expectations about the technology’s affordances. With 20% of interactions being between people and the technology and 80% between people, Reference Pattern 1—widespread incorrect expectations leading to widespread abandonment—is (finally) relatively robust.

Implications & Future Research
The analyses above do more than match or fail-to-match a particular pattern. They also shed light on features of technology and the implementing context that are likely to be important in determining how broadly a new technology is likely to be taken up. Some of these I varied experimentally, others I saw suggestive evidence for, pointing the way to useful directions for future modeling or future field work.
Important Features Identified
	The most important feature of the technology that I included in the models above is what I termed its transparency. This has a huge impact on how people who start without expectations affect the final outcome. When the technology is highly transparent (as in Model A), even a relatively small number of people starting without expectations are likely to eventually figure out what the technology does and spread that information around the setting (as in experiments A.1.c and A.2.c.). When the technology is relatively opaque (as in Models B and C), in order to achieve broad usage, more people without starting expectations are needed to increase the likelihood that someone will get lucky and learn from the technology (as in experiments B.2.c, and C.2.c.). It should also be the case that in conditions of low transparency, widespread usage is more dependent on information about technology’s affordances being passed through social interaction—that is either sensitive to the presence or absence of correct starting expectations, or to the proportion of social vs. material interactions. These modeling experiments would be a logical extension of the current work. 
In a real organizational context, a technology’s transparency might be affected by any number of features of its design and functioning (Weick, 1990). Future field work might look specifically at how much time, or what types of interactions, it takes people to figure out what a technology can do, absent of any particular expectations, and relate this to observations of take-up. 
	One critically important factor in the implementing context is people’s persistence. In the model this refers to the number of interactions people will have with the technology before locking in their current expectations and usage. With limited persistence off, if the model is allowed to continue long enough everyone will always come to the same usage. In Model A this means that if anyone in the whole organization ever comes to hold a correct expectation about the technology, then eventually everyone will use it. In Models B and C, if can-learn-unexpectedly is on everyone should eventually come to use the technology no matter what. Since uniform usage regardless of starting conditions was not the reference pattern I was aiming to replicate I didn’t vary persistence directly. However, a useful extension of the current project might be to explore how variation in people’s willingness to persist in trying to use the technology affects uptake. For example, what if people are only willing to try to use it once? What persistence varies across individuals? 
Persistence might also be a useful focus for future field work. People’s persistence might be about the number of interactions or amount of time tooling around people have patience for, it also might be about the amount of top-down pressure to use the tool, or the adequacy of existing resources (i.e. the motivation to switch). Understanding what real-world factors affect people’s willingness to persist in trying to use a technology might be quite helpful in increasing the likelihood of widespread take-up. As these models demonstrate, such as effect would stem not only from the increased likelihood than an individual who persists longer would use the technology, but also from the information about the technology’s affordances that person would pass along to their coworkers.
Another important feature of the implementing context is how much people interact with the technology as compared to interacting with each other. I demonstrated the significance of this proportion in affecting the role that a small number of people starting with correct expectations can have in a group with widespread incorrect expectations in experiments C.1.b.i-iii. In that case, increasing the proportion of material interactions from 5% to 20% dramatically reduced the effect of a few correct expectations in a group with largely incorrect expectations. An important next step would be to understand how such a change affects usage under different starting conditions.
Future Work
	In addition to these features which were included in Models A, B, and C above, the process of developing these models has also pointed me towards other features which might be significant in developing better models in the future.
	First, in all of the current models, whether or not people interact with the technology is random—unrelated to their expectations. However in real life people make choices about whether to interact with a new technology. And it seems reasonable to expect that these choices would be strongly influenced by their expectations about the technology’s affordances—specifically that people would be more likely to try to use it if they thought it would be good for something.
	Second, future modeling could make greater use social network structure. In the current analyses I reported mean outcomes. However further analysis could investigate the specific individuals who end up using or not using the technology and how this is related to their position in the network. For example, is an individual’s usage correlated with how their team members use technology?
	Another way to make further use of networks would be to experimentally vary the structure. In Model C I used one type of network—a small world network build out of overlapping teams. However it might be that a preferential attachment network would operate quite differently. Using real network data might also be quite informative here.
Another possible extension would be not so much to the model(s) themselves but to the way of evaluating success in matching the reference structure. In these models I took each reference pattern individually. However since the work groups were actually part of a larger organization, another approach would be to say that the model should be creating subgroups of relatively homogenous usage or non-usage. In other words, design a model to replicate Reference Patterns 1 and 2 simultaneously.
 
Conclusion
In this paper I used agent-based models to replicate and extend a empirical case study. In his ethnographic account of the implementation of CrashLab, Leonardi (2009, 2012) articulates a set of mechanisms that relate people’s social and material interactions as they develop an understanding of what a technology can be used for: Social interactions shape people’s expectations for the technology, which in turn shape their material interactions with the tool; information from these material interactions then is incorporated into future social interactions. In this paper I described a series of agent-based models designed to model these mechanisms by matching the two outcomes Leonardi describes. 
Reference Pattern 2—widespread absence of starting expectations leading to widespread usage of the technology—was highly robust under all three models, even with substantial numbers of people beginning with incorrect expectations for the technology’s affordance. Under most model conditions, Reference Pattern 1—widespread incorrect expectations leading to widespread abandonment of the technology—was quite sensitive to the presence of small numbers of people with correct starting expectations. However in Model C, increasing the ratio of material to social interactions made Reference Pattern 1 more robust as well. 
In addition to the significance of the proportion of material influence, the models illuminated the importance of other technological and contextual factors as well. People’s persistence in interacting with the technology, was a critical factor identified early in Model A—limits on people’s persistence is a central reason that technology’s are sometimes abandoned. The transparency of the technology itself is also quite important. Reducing this in Model B made the model’s behavior somewhat more life-like, but also, unfortunately more prone to technology abandonment.
Using the agent-based modeling methodology allowed me to complement and expand on Leonardi’s ethnographic observations. Building on the basic mechanisms he identified I have been able to take a step forward towards pin-pointing more specifically which aspects of the technology and implementing context and likely to be especially significant in determining outcomes. This, I hope, will help point the way towards fruitful lines of future research and better real-world implementation outcomes.
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