Final Project Progress Report - May 23

Agent behavior
Every particle has an x, y, and z coordinate, and at every time step it calculates the gravitational force exerted upon itself by every other turtle and modifies its velocity accordingly.

For this week, I modified the 3d model (fixing some physics bugs and changing the way it zoomed out to make it more smooth). I also set up a few basic starting conditions to show interesting phenomena - a basic system of two equivalent particles in a stable orbit, two pairs of particles orbiting each other, and a system with one huge particle in the center.

I also began a second, separate model which models a 2d space, and uses the z-axis to display gravity wells. The basic physics are the same, but there is a system of turtles connected with links to show a distorting plane to represent the gravitational potential energy at every point. This was heavily based on the 3d landscape sample model, and borrows the breed name “stayers” from that model for the turtles that define the links making up the mesh plane showing the gravity wells.

I still haven’t figured out what exactly should happen upon collision (that’s for next week), but in the meantime I’ve made it so that the distance between two turtles used for calculations cannot be less than the sum of their radii. This means that there cannot be the kind of physics glitches described last week where close distances resulted in huge forces flinging the turtles apart.

System behavior
Systems are a little more stable this week with the aforementioned changes. The behavior isn’t significantly different this week from last week - a lot of the changes have been creating better ways to display what’s happening. The gravity well model is noticeably slow - I somewhat improved this by adding a “sphere of influence” slider, and when a particle is modifying the mesh around it, it only modifies the points within that distance. This is purely visual - physics calculations still happen at all distances - but only visually updating a fraction of the mesh (when with a reasonably set SoI, anything else would have been pretty insignificant) helps. I may add something similar for the actual physics.

Rationale for agent rules
The basic rules are still just based on laws of physics and gravitation. The modifications I’ve made are either to correct minor glitches or better present data to the user.

Model output
I added an output graph of total kinetic energy of particles (which is easy to calculate since the turtles keep track of their velocities and mass). As expected, an elliptical orbit causes a periodic graph, with kinetic energy spiking as the particle reaches the lowest point of the orbit and dropping farther out, where kinetic energy is converted to gravitational potential energy. This has been an interesting and enlightening measurement for systems that aren’t completely stable - when you have multiple particles and orbits interacting with each other, and things aren’t 100% cyclical, things get interesting. It’s actually been an interesting challenge to see if I could set up multiple visible frequencies at once.

Questions
What laws should govern direct physical interactions? What should my other models be?

Next steps
Add interesting rules for direct particle interactions. I also want to add manual zoom controls for the user - the automatic zoom I currently have works well with a small number of particles, but the way it currently works is to zoom out whenever ANY particle is near the edge of the world. When there are many particles, it is easy for one outlier to force a lot of zooming out and make the action impossible to see. So I need to either give the user a way to counteract this, or make things more easily visible even when zoomed out a lot (maybe let the user manually change the display size of particles).

In experimenting with the “heliocentric” setup with one large particle in the center, I went back to thinking about making models of galaxy formation with clouds of lots of little particles vs. models of already created planets and their orbits, as someone suggested when we workshopped our ideas in class. So now I’m also considering making a version of the model that more closely models our solar system (or some generalized system with a large star in the center), and allowing the user to manually mess with orbits Kerbal-Space-Program-style by pausing the simulation and modifying the velocities of individual turtles. One interesting challenge that would be cool to implement is that KSP shows the path of your orbit as you adjust your velocity, allowing you to quickly see the results of your actions and even plan gravity assists and other cool orbital things. I have no idea how they do this though, and this would take a bit of investigation, but that would be REALLY cool to implement. And I think this would be different enough to justify creating another model - the core is still the same, but the change in focus would require a good amount of modifications. I’m not sure if this may end up being too ambitious, but I want to try it.

Model analysis
The kinetic energy plotter I added confirms what I already knew about orbital mechanics, but it has been a really cool tool to analyze more complicated systems.

Advanced feature
I’ve been having trouble setting up Lightbend Activator to create an extension. I’ll come to office hours again this Friday to try to figure it out, but if I can figure out a cool fourth model to go along with this third idea I’ve had I’d be totally willing to do that as well.
