
CIAO
Collective Intelligence Algorithm for Optimisation

A tool for numeric optimisation of bound-constraint
cost functions using collective intelligence simulation

User Guide
Version 1.24

Sergio A. Rojas, PhD.
Lindsay Álvarez, PhD.

Universidad Distrital Francisco José de Caldas

Bogotá, Colombia, May 2024

CIAO Version 1.25 - User guide

Copyright © 2024 The author

This document is distributed under the CC BY-NC-ND license (Creative Commons
Attribution-Noncommercial-NoDerivatives 3.0). Any other unauthorised form of
distribution, copying, duplication, reproduction, or sale (total or partial) of the
content of this document, both for personal and commercial use, will constitute an
infringement of copyright. This guide is an original work of its author, and therefore
it is protected by the laws that regulate copyright and intellectual property. The
opinions and points of view expressed in this document are personal to the author
and do not compromise the policies, intentions, strategies, or official position of
any other organism, company, organisation, service or person mentioned in it.

The author has made every effort to ensure that this guide is free from errors or
omissions. However, the author accepts no responsibility for offence, damage or
loss caused to any person acting or endorsing actions using the material contained
in this document.

First Edition, May 2024
Bogotá, Colombia

Overview

CIAO stands for Collective Intelligence Algorithm for Optimisation, and is a tool
designed to find approximate solutions to optimisation problems whose decision
variables take numeric values in the real domain, inspired in the mechanisms of the
collective intelligence genome. The software is designed for an academic audience
interested in the field of metaheuristics, as an user-friendly visual tool to conduct
simulation experiments with a set of benchmark optimisation problems.

The approach of solving an optimisation problem with a collective of arti-
ficial agents undergoing an adaptation process is known as a population-based
metaheuristics. Instead of using mathematical analysis of aggregated variables
describing the phenomena, this approach resorts to modelling the interaction of a
group of agents in a simulated environment and trace the evolution of such variables
as they interact during the simulation process. In this way, CIAO enables the visual
inspection of the emerging patterns of agents’ self-organisation, in response to
changes in the simulation parameters, which can provide useful insights regarding
the adaptability of the algorithm to the hidden properties of the problem.

CIAO v1.25 has been released under GNU General Public License (GPLv3); it is
available online at:

https://modelingcommons.org/browse/one_model/7368

iii

https://modelingcommons.org/browse/one_model/7368

Contents

Overview iii

1 Description of the tool 1
1.1 What is CIAO? . 1
1.2 How it works . 2
1.3 How to use it . 2
1.4 Other distinctive features . 5
1.5 Try it yourself . 6
1.6 Extending the tool . 6
1.7 List of benchmark problems . 7

2 Installation and execution 9
2.1 Online (web) version . 9
2.2 Desktop version . 11

3 Source code 13

4 Software license 25

v

Chapter 1

Description of the tool

1.1 What is CIAO?

The CIAO (Collective Intelligence Algorithm for Optimisation) metaheuristic simu-
lates a collective intelligence approach to solving unconstrained continuous optimi-
sation problems. It involves agents known as solvers (wolves) and users (dogs),
navigating a solution space to find the optimal coordinates that minimise a cost
function associated with an optimisation problem. This tool implements the
algorithm as an agent-based model using the Netlogo language.

1

1.2 How it works

Solver agents maintain knowledge about promising sub-regions in the search space,
represented as Gaussian distributions, involving their core expertise and their
expertise dispersion. Users seek solutions from solvers, and the model incorporates
learning and reputation mechanisms to refine the solver’s expertise and reward
effective solutions.

1.3 How to use it

Firstly, configure the simulation parameters in the simulation user interface:

• LANDSCAPE: Chooses the optimisation problem, visually represented
in the view or world area. Selection influences the XY-BOUNDS. Refer
to the APPENDIX: LIST OF BENCHMARK PROBLEMS section for a
description of available benchmark functions.

• XY-BOUNDS: Sets the lower and upper bounds of the search space
depending on the chosen landscape.

• N-SOLVERS: Defines the number of solver agents.

2

• K-SOLUTIONS: Defines the number of solutions a chosen solver attempts
to generate.

• N-USERS: Defines the number of user agents.

• ALPHA: Sets the learning rate for solver adaptation.

• ELITISM? Activates the elitism mechanism, which ensures that the best
solution found in the current generation is passed on as the center of expertise
for one of the solvers in the next generation of the algorithm.

• REPUTATION?: Enables or disables choosing solvers based on their
scores using roulette wheel selection.

• LHS?: Enables or disables Latin Hypercube Sampling of the initial solver
population.

• RESTARTS?: Enables or disables random resets to prevent stagnation
due to premature convergence to local minima.

• SPOTLIGHT?: Enables or disables highlighting the global minima in the
view or world area.

• MAX-TICKS: Sets the maximum number of iterations of the algorithm
main search routine.

• GRID-SIZE: Adjusts the resolution of the view area. Choose “web (200x200)”
if running on the model online in the modelling commons website, as server
memory constraints limit the amount of cells in the search space. Choose
“local (1000x1000)” for a higher resolution of 1000x1000 cells if running on a
desktop machine, allowing for better discretisation of the search space.

3

• CELL-SIZE: Specifies the size of each grid cell in the view area. Can be
adjusted from 0.1 to 2 with a step increment of 0.1. This control enables
closer or further inspection of the cells in the view area.

• AGENT-SIZE: Controls the size of agent representations in the view area.
Adjusts from 10 to 50 with a step increment of 10.

A typical configuration of values for these parameters would be:
• N-SOLVERS: 10
• K-SOLUTIONS: 4
• N-USERS: 5
• ALPHA: 0.5
• ELITISM?: On
• REPUTATION?: On
• LHS?: On
• RESTARTS?: On
• MAX-TICKS: 1000
Next click the SETUP button to initialise the model with chosen parameters.

And then click the GO button to start the simulation. Observe the movement
and interaction of solvers and users in the view area of the simulator. You can
control the execution of the simulation using the control panel buttons:

• SETUP: Computes and visualises the landscape and initialises agents and
global variables of the simulation, according to the given parameters.

• RESET: Only initialises agents and global variables of the simulation,
according to the given parameters. Also clears plots from previous runs.

• GO: Executes the main search routine until stopping conditions are met.

• STEP: Executes one iteration of the main search routine.

The model also features two buttons for test experimentation:

• TEST SOLO: Executes an experiment with the specified number of rep-
etitions (i.e. RUNS), using the current configuration of model parameters
for the selected LANDSCAPE. Results of each run are recorded as either a
hit or a miss depending on whether the algorithm finds the optimum or not.
The BEST-TICK, which indicates the time step at which the solution was
found in each run, along with the overall success rate within the specified
MAX-TICKS, is displayed in the COMMAND-CENTER panel.

• TEST ALL: Performs the same experiment but tests the specified number
of RUNS on all benchmarks available in the LANDSCAPE list. Aggregated
results showing the success rate for each experiment are displayed in the
COMMAND-CENTER panel.

4

1.4 Other distinctive features
• Observe how solvers adapt their expertise to the search space, guiding users

towards promising regions.

• Observe how regions with low (black) and high (yellow) values in the land-
scape are visualised in the view area based on the selected problem (LAND-
SCAPE).

• Watch the TRUE-OPTIMUM value and notice how the BEST-EVER ap-
proaches to it.

• Monitor the BEST-EVER patch, BEST-TICK, and BEST-TIME to under-
stand when and where the best solution is discovered.

• Observe how the EXPERTISE CORE and EXPERTISE DISPERSION
parameters of solvers evolve over time in the corresponding plots.

• Analyse the SOLVERS SCORE plot to see how solvers’ reputation change
during the optimisation process.

• Notice the periodic changes in the SOLVERS SCORE plot when RESTARTS?
is enabled.

5

1.5 Try it yourself
• Experiment with different numbers of SOLVERS and USERS to observe how

the collective intelligence adapts to problem complexity.

• Observe how adjusting the learning rate (ALPHA) affects the adaptation
of solver expertise. Higher values (closer to 1) make solvers more resistant
to exploring new solutions and cling to their currently known best solution.
Lower values make them more susceptible to learning from new information
and exploring alternative solutions.

• Evaluate the impact of greedy (utilising the single best new solution) and
non-greedy (leveraging the average performance of multiple new solutions)
learning strategies on solver adaptation using the GREEDY? switch.

• Explore the effects on solvers scores and on user decisions, of enabling or
disabling reputation-based solver selection (REPUTATION?).

• Test the impact of Latin Hypercube Sampling of initial solver locations
(LHS?).

• Observe the behaviour when random restarts are enabled or disabled (RESTARTS?).

• Toggle the spotlight (SPOTLIGHT?) to visually track the global minimum
in the landscape, and how user agents approach to it.

As a side note, we remark that the resolution level can induce quantisation
errors during the cost function sampling, therefore the optimum patch coordinates
of a given LANDSCAPE can differ depending on the GRID-SIZE. For example,
the optimum of ROSENBROCK’S problem is different for 1000x1000 and 200x200
resolutions.

1.6 Extending the tool
Some possible paths for tool extensions are:

• Extend the list of landscape functions of optimisation problems.

• Implement additional user or solver behaviours to enhance the complex-
ity of the collective intelligence dynamics. Techniques such as temporal
memory, tabu lists, collaboration mechanisms, or more advanced expertise
representation models like a mixture of Gaussians.

• Extend the model to incorporate alternative solver selection strategies to
compare their impact on the optimisation process.

• Generalise the model to handle continuous optimisation problems in more
than two dimensions (d > 2).

• Investigate the adaptation of the model for binary domain problems, exploring
how the dynamics change in this context.

6

1.7 List of benchmark problems
The CIAO tool offers a range of benchmark optimisation problems for users to
explore the behaviour of the Collective Intelligence elements of the algorithm.
Widely known in optimisation literature, these problems provide diverse challenges.
Users can select from any of the 33 benchmark functions included in this version.

Here’s a brief overview of the 33 benchmark problems available in the LANDSCAPE
control, listed in alphabetical order:

1. Ackley: A smooth and well-known optimisation problem characterised by a
large, deep, and nearly flat global minimum.

2. Beale: A multimodal problem with a relatively flat region around the global
minimum.

3. Bohachesvsky n.1: A non-convex problem with multiple local minima and
a single global minimum.

4. Booth: A simple, yet challenging optimisation problem with a single global
minimum.

5. Cross-in-Tray: A problem with four symmetric global minima and an
intricate landscape.

6. Damavandi: A complex multimodal problem with varying scales of minima.

7. Dixon-Price: A non-convex problem with multiple local minima.

8. Dropwave: A problem with a large, flat area around the global minimum,
adding difficulty to optimisation.

9. Easom: A problem with a global minimum resembling the shape of a cosine
function.

10. Eggholder: A challenging problem with multiple global minima, charac-
terised by a complex landscape.

11. Goldstein-Price: A problem with a deep, narrow canyon leading to the
global minimum.

12. Himmelblau: A multimodal problem with several local minima.

13. Holder-Table: A multimodal problem with a flat region around the global
minimum.

14. Hosaki: A simple problem with a single global minimum and a smooth
landscape.

15. Levy: A problem with a single global minimum and a complex, curved
landscape.

16. Matyas: A convex problem with a single global minimum.

7

17. Michalewicz: A non-convex problem with multiple local minima.

18. Mishra n.3: A problem with multiple local minima and a single global
minimum.

19. Mishra n.5: A non-convex problem with multiple local minima and a single
global minimum.

20. Mishra n.6: A problem with several local minima and a single, more
pronounced global minimum.

21. Parsopoulos: A complex multimodal problem with varying scales of minima.

22. Random: The cost function is randomly generated, simulating scenar-
ios where optimisation landscapes lack deterministic behaviour or specific
mathematical properties.

23. Rastrigin: A challenging optimisation problem with a highly multimodal
landscape.

24. Rastrigin Bipolar: A bipolar version of the Rastrigin problem.

25. Rastrigin Offset: A variant of the Rastrigin problem with an offset in the
global minimum.

26. Rosenbrock: A classic optimisation problem with a valley leading to the
global minimum.

27. Schaffer n.2: A simple, yet challenging optimisation problem with a deep
and narrow global minimum.

28. Schaffer n.4: A problem with a large and flat global minimum.

29. Sphere: A convex problem with a single global minimum.

30. Sphere-Offset: A variant of the Sphere problem with an offset in the global
minimum.

31. Three-Hump Camel: A non-convex problem with multiple local minima.

32. Vincent: A problem with several local minima and a single, more pro-
nounced global minimum.

33. Zakharov: A problem with a large and flat global minimum.

We encourage you to explore various benchmark functions and witness how
the CIAO model adapts to diverse optimisation challenges, showcasing the power
of Collective Intelligence in solving engineering problems.

8

Chapter 2

Installation and execution

2.1 Online (web) version
The easiest way of experimenting with CIAO is by using its online version. The
software is available at the ModellingCommons website. So, you just need to follow
these steps:

1. Open your favourite Internet browser and point it to the following URL:
http://modelingcommons.org/browse/one_model/7368

2. The following web page should appear:

9

http://modelingcommons.org/browse/one_model/7368

3. From the toolbar, choose the “Run in Netlogo Web” tab:

4. A grey area in the middle of the screen is shown. Do “Click to Run Model”:

5. The model main screen will show up:

6. That’s it! Select the running parameters in the control panel, click on SETUP,
and then on GO! You’ll observe the emergence of collective intelligence solving
optimisation problems in the simulation view area. Performance indicators of
the CIAO algorithm will be displayed in the monitors and plots. Alternatively,
you can run the simulation multiple times using the QUICK TEST button
and RUNS slider.

10

2.2 Desktop version
The desktop version is recommended if you want to try heavy experimentation,
such as parameter tuning, average behaviour of multiple runs or simulations with
large resolution for the view area. For this purpose, CIAO runs over the NetLogo
desktop simulation platform. In this case, you need to go through the following
steps:

1. Download and install the NetLogo desktop software. For this purpose, go to
http://ccl.northwestern.edu/netlogo/, click in “Download NetLogo”
and follow the installation instructions:

2. Download the CIAO model file from the model webpage, using the “Export”
button:

A file named model_contents.nlogo (or the name you specify) will be down-
loaded to your local drive.

11

http://ccl.northwestern.edu/netlogo/

3. Run NetLogo on your computer. Choose the menu option File → Open:

Locate the file named model_contents.nlogo (or the name you specified) that
you downloaded previously and open it.

4. The CIAO desktop screen will show up:

That’s it! Choose the running parameters in the control panel, click on
SETUP, and then on GO! You’ll observe the emergence of collective intelli-
gence solving optimisation problems in the simulation view area. Performance
indicators of the CIAO algorithm will be displayed in the monitors and plots.
Alternatively, you can run the simulation multiple times using the QUICK
TEST button and RUNS slider.

12

Chapter 3

Source code

;---
; CIAO: Collective Intelligence Algorithm for Optimization
;---
; This NetLogo code implements CIAO, a novel metaheuristic
; algorithm that leverages the collective intelligence of
; solvers and users to explore and optimize the solution
; space of a given optimization problem.
;
; Authors: Sergio Rojas-Galeano, Lindsay Álvarez, Martha Garzón
; v1.25 Copyright (c) 2024 The authors
; License: GNU General Public License (GPLv3)
; See Info tab for full copyright and license.
;---

; Global variables to store information about the best solution found
globals [

true-best-patch ; Patch corresponding to the ground-truth optimum
best-ever ; Patch corresponding to the best solution found so far
best-tick ; Tick when best-ever was found
best-time ; Time when best-ever was found

]

; Patch attributes to represent landscape and cost function of the optimization
problem

patches-own [
x ; Patch x-coordinate, associated with a point in the solution space

within the defined bounds
y ; Patch y-coordinate, associated with a point in the solution space

within the defined bounds
value ; Patch value corresponding to the cost function evaluated at its (x, y)

coordinates
]

; Agent breeds for different types of agents in the simulation
breed [solvers solver]
breed [users user]
breed [solutions solution]

; Solver agents' attributes
solvers-own [

bx by ; Knowledge of the best solution location found so far
mx my ; Core (mu) component of solver expertise
sx sy ; Breadth (sigma) component of solver expertise
score ; Solver's rating given by users

]

13

; User agents' attributes
users-own [

own-best ; User's best solution value found so far
]

; Execute a single iteration of the main loop.
to go

; Reset the timer on the first tick
if ticks = 0 [reset-timer]

; Apply search operators
search-solutions
update-best
tick

; Restart agents at regular intervals if restarts are enabled
if (restarts? and ticks mod 50 = 0) [restart]

; Stopping conditions: maximum number of ticks reached or true-best-patch found
if (ticks > max-ticks) or (any? true-best-patch with [value = [value] of

best-ever]) [stop]
end

; Search for solutions based on user interactions
to search-solutions

ask users [

; Choose a solver and spawn new candidate solutions according to its
expertise model

let my-solver choose-solver
hatch-solutions k-solutions [

set xcor random-normal [mx] of my-solver [sx] of my-solver
set ycor random-normal [my] of my-solver [sy] of my-solver

]

; Save user current location and move it to the best among the new solutions
let old-patch patch-here
move-to min-one-of solutions [value]

; Check if the best among the new solutions is better than the user's own best
ifelse value < own-best [

; If so, update the user's own best and reward the chosen solver using the
new location

set own-best value
reward-solver my-solver patch-here

] [

; Otherwise, preserve the previous own best location
move-to old-patch

]

; Update solver's expertise and forget candidate solutions
update-solver my-solver
ask solutions [die]

; Apply elitism if switched on
if elitism? [

; Choose the best performing solver and center it around the best ever
location

ask min-one-of solvers [value] [
move-to best-ever
set mx xcor set my ycor

]
]

14

]
end

; Reward the solver for obtaining a better solution
to reward-solver [the-solver better-patch]

ask the-solver [
set score score + 1 ; Increase the solver's reputation
move-to better-patch ; Move to the better solution's location
set bx xcor ; Update the solver's best solution's x-coordinate
set by ycor ; Update the solver's best solution's y-coordinate

]
end

; Update the solver's knowledge as they search for new solutions
to update-solver [the-solver]

ask the-solver [
let new-x 0 let new-y 0 ; Initialize variables for new coordinates

set new-x [xcor] of min-one-of solutions [value]
set new-y [ycor] of min-one-of solutions [value]

; Update solver's core expertise based on the learning rate
set mx (alpha * bx) + ((1 - alpha) * new-x)
set my (alpha * by) + ((1 - alpha) * new-y)
setxy mx my ; Move the solver to the updated location

; Narrow down the solver's expertise dispersion
set sx sx * exp (-.001 * (ticks mod 50))
set sy sy * exp (-.001 * (ticks mod 50))

]
end

; Check if any user has improved the best solution found so far
to update-best

let best-now min-one-of users [value]

if [value] of best-now < [value] of best-ever [
; Record the location, tick, and time when a newer best-ever solution was

found.
ask best-now [set best-ever patch-here]
set best-tick ticks
set best-time timer

]
end

; Perform the initial setup for the simulation
to setup

clear-all ; Clear the world and all agents
setup-search-landscape ; Set up the landscape and cost function
setup-solvers ; Set up solver agents
setup-users ; Set up user agents
setup-globals ; Set up global variables

end

; Reset the simulation for a new run (without computing the landscape again)
to reset

clear-all-plots ; Clear plot monitors from the previous run
setup-solvers ; Reinitialize solver agents
setup-users ; Reinitialize user agents
setup-globals ; Reinitialize global variables

end

; Set up solver agents
to setup-solvers

15

; Clear previous solver agents
ask solvers [die]

; Create solver agents
create-solvers n-solvers [

; Assign visual attributes
set shape "wolf 7"
set color 4 + (10 * who)
set size agent-size

; Initialize expertise model and score
set mx random-xcor
set my random-ycor
set sx random-float 50
set sy random-float 50
set bx mx
set by my
set score 1

; Set initial random location
setxy mx my

]

; If enabled, change locations with Latin Hypercube Sampling (lhs)
if lhs? [latin-hypercube-sampling]

end

; Set up user agents
to setup-users

; Clear previous user agents
ask users [die]

; Create new users
create-users n-users [

; Assign visual attributes
set shape "dog"
set size agent-size

; Assign initial own best solution
move-to one-of patches
set own-best value

]
end

; Assign initial values for global variables
to setup-globals

set best-tick 0
set best-time 0
set best-ever max-one-of patches [value]
reset-ticks

end

; Restart agents to prevent stagnation
to restart

setup-users
setup-solvers

end

; Choose a solver either randomly or guided by reputation
to-report choose-solver

ifelse (reputation?) [
; Choose a solver based on their reputation using a roulette wheel
let score-list map [[the-solver] -> [score] of the-solver] sort solvers
let id-list map [[the-solver] -> [who] of the-solver] sort solvers

16

; Compute cumulative distribution from the histogram of scores
let hist fput (list (first score-list)) (but-first score-list)
let aggs reduce [[cumul next] -> sentence cumul ((last cumul) + next)] hist

; Use a roulette wheel to choose a solver according to the cumulative
distribution

let pockets map [p -> p / last aggs] aggs ; Compute wheel pockets by
normalizing cumulative sum

let ball random-float 1 ; Roll the ball, then check the
winner pocket

let winner first filter [[index] -> ball <= item index pockets] range
length pockets

report solver item winner id-list
] [

; Otherwise choose any solver at random uniformly
report one-of solvers

]
end

; Perform Latin Hypercube Sampling for initial solver locations
to latin-hypercube-sampling

; Compute the width of location slots
let width 2 * max-pxcor / n-solvers

; Split each dimension into non-overlapping slots (1 per solver) and sample
random locations within

foreach range 2 [index ->
let coordinates shuffle n-values n-solvers [slot -> width * (slot +

random-float 1)]

; Assign coordinate locations for each agent in an orderly manner, ensuring
bound constraints

(foreach sort solvers coordinates [
[the-solver coordinate] ->

ask the-solver [
ifelse index = 0 [

; x-coordinate
set mx (- max-pxcor + coordinate)
set bx mx
set xcor mx

][
; y-coordinate
set my (- max-pycor + coordinate)
set by my
set ycor my

]
]

])
]

end

; Reporter to display solver's score
to-report show-scores [the-agent]

report (word "s_" who "=" score " | ")
end

; Reporter to display agent's location
to-report locations [the-agent]

report (word "u_" who ": (" precision x 1 ", " precision y 1 ")|")
end

; Define view area settings when loading the model
to startup

set grid-resolution "web (200x200)"

; Startup with cell size 1 to prevent view area distortions when resizing
(NetLogo bug)

set cell-size 1
set agent-size 10

17

end

; Routine for quick testing of success rate of a number of repetitions
to quick-test [verbose]

print "--"
type (word landscape " >> Testing " runs " runs" ifelse-value verbose ["

(successful runs marked as '!!!'): \n"] [":"])
setup
set max-ticks round ((ifelse-value grid-resolution = "web (200x200)" [8000]

[20000]) / (n-users * k-solutions))

let n 0 let i 1
repeat runs [

ifelse landscape = "random" [setup] [reset]
let success false
while [ticks < max-ticks and not success] [

go
set success (any? true-best-patch with [value = [value] of best-ever])

]
ifelse verbose [

print (word "run #" i " >> best-tick: " best-tick ifelse-value success [
"!!! (hit)"] [" (miss)"])

] [
type "."

]
set n n + ifelse-value success [1] [0]
set i i + 1

]
print (word "\n" landscape " >> Success rate (within " max-ticks " max.ticks):

" n "/" runs)
end

;-------------------- DEFINITION OF BENCHMARK OPTIMIZATION PROBLEM LANDSCAPES

; This procedure computes the landscape of the chosen cost function and
visualizes it.

; Source: Jamil, M., & Yang, X. S. (2013). A literature survey of benchmark
functions for global

; optimization problems. International Journal of Mathematical Modelling and
Numerical Optimisation.

; To add new problems, simply insert the mathematical expression of their cost
function as new cases.

to setup-search-landscape
clear-all

; Setup world and patch size
set-patch-size cell-size
ifelse grid-resolution = "web (200x200)" [

(ifelse
landscape = "damavandi" or
landscape = "hosaki" or
landscape = "michalewicz" or
landscape = "vincent" [resize-world 0 200 0 200]
landscape = "zakharov" [resize-world -50 150 -50 150]
; All other optimisation problems are defined over the four quadrants of

the solution space
[resize-world -100 100 -100 100]

)
] [

(ifelse
landscape = "damavandi" or
landscape = "hosaki" or
landscape = "michalewicz" or
landscape = "vincent" [resize-world 0 1000 0 1000]
landscape = "zakharov" [resize-world -250 750 -250 750]
; All other optimisation problems are defined over the four quadrants of

the solution space
[resize-world -500 500 -500 500]

18

)
]

; Setup range of variable coordinates for each problem
set xy-bounds (ifelse-value

landscape = "ackley" [32]
landscape = "beale" or
landscape = "michalewicz" or
landscape = "parsopoulos" [5]
landscape = "bohachesvsky n.1" [100]
landscape = "booth" or
landscape = "cross-in-tray" or
landscape = "dixon-price" or
landscape = "holder-table" or
landscape = "hosaki" or
landscape = "levy" or
landscape = "matyas" or
landscape = "mishra n.3" or
landscape = "mishra n.5" or
landscape = "mishra n.6" or
landscape = "vincent" or
landscape = "zakharov" [10]
landscape = "damavandi" [14]
landscape = "eggholder" [512]
landscape = "goldstein-price" [2]
; For the following problems, we use the range [-32, 32] instead of the

original [-100, 100], to reduce discretization errors
landscape = "easom" or
landscape = "schaffer n.4" or
landscape = "schaffer n.2" [32]
; For any other problem use a [-5, 5] default range
[5]

)

; Evaluate the cost function for each patch in the landscape
ask patches [

set x pxcor * (xy-bounds / max-pxcor)
set y pycor * (xy-bounds / max-pycor)

; Note: Trigonometric functions require input in degrees, not radians; thus,
a conversion factor (180 / pi) was used

set value
(ifelse-value

landscape = "ackley" [
-20 * exp(-0.2 * sqrt(0.5 * (x ^ 2 + y ^ 2))) - exp(0.5 * (cos((180 / pi)

* (2 * pi) * x) + cos((180 / pi) * (2 * pi) * y))) + 20 + e
]
landscape = "beale" [

((1.5 - x + (x * y)) ^ 2) + ((2.25 - x + (x * (y ^ 2))) ^ 2) + ((2.625 -
x + (x * (y ^ 3))) ^ 2)

]
landscape = "bohachesvsky n.1" [

(x ^ 2) + 2 * (y ^ 2) - (0.3 * (cos((180 / pi) * 3 * pi * x))) - (0.4 *
cos ((180 / pi) * 4 * pi * y)) + 0.7

]
landscape = "booth" [

(x + (2 * y) - 7) ^ 2 + ((2 * x) + y - 5) ^ 2
]
landscape = "cross-in-tray" [

-0.0001 * (((abs(sin((180 / pi) * x) * sin((180 / pi) * y) * exp(abs(100
- ((sqrt((x ^ 2) + (y ^ 2)))) / pi)))) + 1) ^ 0.1)

]
landscape = "damavandi" [

; ifelse-value (x = 2) or (y = 2) [100]
; ifelse-value (x = 2) and (y = 2) [0]

ifelse-value (abs(x - 2) < 0.0001) or (abs(y - 2) < 0.0001) [100]
ifelse-value (abs(x - 2) < 0.0001) and (abs(y - 2) < 0.0001) [0]
[(1 - (abs(((sin((180 / pi) * pi * (x - 2))) * (sin((180 / pi) * pi * (y

- 2)))) / ((pi ^ 2) * (x - 2) * (y - 2)))) ^ 5) * ((2 + (x - 7)
^ 2) + (2 * (y - 7) ^ 2))]

19

]
landscape = "dixon-price" [

(x - 1) ^ 2 + 2 * ((2 * y ^ 2) - x) ^ 2
]
landscape = "dropwave" [

-1 * (((1 + (cos((180 / pi) * 12 * sqrt((x ^ 2) + (y ^ 2))))) / (0.5 *
((x ^ 2) + (y ^ 2)) + 2)))

]
landscape = "easom" [

-1 * (cos ((180 / pi) * x) * cos ((180 / pi) * y)) * exp (-((x - pi) ^ 2
+ (y - pi) ^ 2))

]
landscape = "eggholder" [; note that degrees, not radians, are needed for

sin function
((- x) * sin ((180 / pi) * sqrt (abs (x - (y + 47))))) - (y + 47) * sin

((180 / pi) * sqrt (abs ((x / 2) + (y + 47))))
]
landscape = "goldstein-price" [

(1 + ((x + y + 1) ^ 2) * (19 - (14 * x) + (3 * (x ^ 2) - (14 * y) + (6 *
x * y) + (3 * (y ^ 2))))) *

(30 + (((2 * x) - (3 * y)) ^ 2) * (18 - (32 * x) + (12 * (x ^ 2) + (48
* y) - (36 * x * y) + (27 * (y ^ 2)))))

]
landscape = "himmelblau" [

((x ^ 2) + y - 11) ^ 2 + (x + (y ^ 2) - 7) ^ 2
]
landscape = "holder-table" [

-1 * abs(sin((180 / pi) * x) * cos((180 / pi) * y) * exp(abs(1 - (sqrt(x
^ 2 + y ^ 2) / pi))))

]
landscape = "hosaki" [

(1 - (8 * x) + (7 * (x ^ 2)) - ((7 / 3) * x ^ 3) + (0.25 * (x ^ 4))) *
((y ^ 2) * exp((- y)))

]
landscape = "levy" [

(sin((180 / pi) * pi * (1 + (x - 1) / 4)) ^ 2)
+ (((1 + (x - 1) / 4) - 1) ^ 2) * (1 + 10 * (sin((180 / pi) * (pi * (1 +

(x - 1) / 4)) + 1)) ^ 2)
+ (((1 + (y - 1) / 4) - 1) ^ 2) * (1 + (sin((180 / pi) * (2 * pi * (1 +

(y - 1) / 4)))) ^ 2)
]
landscape = "matyas" [

(0.26 * ((x ^ 2) + (y ^ 2))) - (0.48 * (x * y))
]
landscape = "michalewicz" [

-1 * (sin((180 / pi) * x) * (sin((180 / pi) * 1 * (x ^ 2) / pi)) ^ (2 *
10))

- (sin((180 / pi) * y) * (sin((180 / pi) * 2 * (y ^ 2) / pi)) ^ (2 *
10))

]
landscape = "mishra n.3" [

sqrt(abs(cos((180 / pi) * sqrt(abs((x ^ 2) + y))))) + 0.01 * (x + y)
]
landscape = "mishra n.5" [

(((sin((180 / pi) * (cos((180 / pi) * x) + cos((180 / pi) * y)) ^ 2)) ^
2

+ (cos((180 / pi) * (sin((180 / pi) * x) + sin((180 / pi) * y)) ^ 2))
^ 2 + x) ^ 2)

+ (.01 * x) + (.1 * y)
]
landscape = "mishra n.6" [

-1 * ln(((sin((180 / pi) * (cos((180 / pi) * x) + cos((180 / pi) * y)) ^
2)) ^ 2

- (cos((180 / pi) * (sin((180 / pi) * x) + sin((180 / pi) * y)) ^ 2))
^ 2 + x) ^ 2)

+ .1 * ((x - 1) ^ 2 + (y - 1) ^ 2)
]
landscape = "parsopoulos" [

cos((180 / pi) * x) ^ 2 + sin((180 / pi) * y) ^ 2
]

20

landscape = "rastrigin" [
20 + ((x ^ 2) - 10 * cos((180 / pi) * (2 * pi) * x)) + ((y ^ 2) - 10 *

cos((180 / pi) * (2 * pi) * y))
]

landscape = "rastrigin offset" [
20 + (((x - 1.123) ^ 2) - 10 * cos((180 / pi) * (2 * pi) * (x - 1.123)))

+ (((y - 1.123) ^ 2) - 10 * cos((180 / pi) * (2 * pi) * (y - 1.123)))
]

landscape = "rastrigin bipolar" [
20 + (((x + 1) ^ 2) - 10 * cos((180 / pi) * (2 * pi) * (x + 1))) + (((y

- 1) ^ 2) - 10 * cos((180 / pi) * (2 * pi) * (y - 1)))
]
landscape = "rosenbrock" [

100 * (y - (x ^ 2)) ^ 2 + (1 - x) ^ 2
]
landscape = "schaffer n.2" [

0.5 + (((sin((180 / pi) * (x ^ 2 - y ^ 2)) ^ 2) - 0.5) / (1 + (0.001 * (x
^ 2 + y ^ 2))) ^ 2)

]
landscape = "schaffer n.4" [

0.5 + (((cos((180 / pi) * sin((180 / pi) * abs(x ^ 2 - y ^ 2)))) ^ 2 -
0.5) / (1 + (0.001 * (x ^ 2 + y ^ 2))) ^ 2)

]
landscape = "sphere" [

x ^ 2 + y ^ 2
]

landscape = "sphere-offset" [
(x - 3) ^ 2 + (y + 3) ^ 2

]
landscape = "three-hump camel" [

(2 * (x ^ 2)) - (1.05 * (x ^ 4)) + ((x ^ 6) / 6) + (x * y) + (y ^ 2)
]
landscape = "vincent" [

ifelse-value x < 0.25 or y < 0.25 [0]
; [-1 * sin((180 / pi) * 10 * (log(x) 10)) - sin((180 / pi) * 10 *

(log(y) 10))]
[-1 * sin((180 / pi) * 10 * ln(x)) - sin((180 / pi) * 10 * ln(y))]

]
landscape = "zakharov" [

(x ^ 2 + y ^ 2) + ((0.5 * x) + (0.5 * 2 * y)) ^ 2 + ((0.5 * x) + (0.5 * 2
* y)) ^ 4

]
; Otherwise, use a random landscape
[random-normal 0 500]

)
]

; Smooth out random landscape for better visualization and search efficiency
if landscape = "random" [

ask min-n-of 4 patches [value] [ask patches in-radius 30 [set value value -
random-float 300]]

repeat 10 [diffuse value 1]
]

; Find the true best patch (global minima) based on the chosen landscape
(ifelse

; Functions with 2 global minima
landscape = "dixon-price" [set true-best-patch min-n-of 2 patches [value]]

; Functions with 4 global minima
landscape = "cross-in-tray" or
landscape = "holder-table" or
landscape = "schaffer n.4" [set true-best-patch min-n-of 4 patches [value]]

; Himmelblau has 4 global minima, but 5 emerge due to discretization errors
landscape = "himmelblau" [set true-best-patch min-n-of 5 patches [value]]

; Functions with 12 global minima
landscape = "parsopoulos" [set true-best-patch min-n-of 12 patches [value]]

21

; Functions with 6^2 global minima
landscape = "vincent" [set true-best-patch min-n-of 36 patches [value]]

; All other cost functions have a single global minima
[set true-best-patch patch-set min-one-of patches [value]]

)

;; Scale patches color within min and max values limits for visualisation purposes
let min-val min [value] of patches
let max-val max [value] of patches

ask patches [
(ifelse

; Problems better visualised using linear color scale
landscape = "ackley" or
landscape = "bohachesvsky n.1" or
landscape = "cross-in-tray" or
landscape = "damavandi" or
landscape = "dropwave" or
landscape = "schaffer n.2" or
landscape = "schaffer n.4" or
landscape = "vincent"
[set pcolor scale-color yellow value min-val max-val]

; Problems better visualised using square rooted color scale
landscape = "easom" or
landscape = "eggholder" or
landscape = "holder-table" or
landscape = "michalewicz" or
landscape = "mishra n.6" or
landscape = "parsopoulos" or
landscape = "zakharov"
[set pcolor scale-color yellow value min-val sqrt max-val]

; Problems better visualised using logarithmic scale
landscape = "beale" or
landscape = "dixon-price" or
landscape = "goldstein-price" or
landscape = "booth" or
landscape = "rosenbrock"
[set pcolor scale-color yellow value min-val log max-val 1.01]

landscape = "rastrigin" or
landscape = "rastrigin offset" or
landscape = "rastrigin bipolar"
[set pcolor scale-color yellow value min-val log max-val 1.05]

landscape = "himmelblau" or
landscape = "levy" or
landscape = "matyas" or
landscape = "mishra n.3" or
landscape = "sphere" or

landscape = "sphere-offset" or
landscape = "three-hump camel"
[set pcolor scale-color yellow value min-val log max-val 1.1]

landscape = "hosaki" or
landscape = "mishra n.5"
[set pcolor scale-color yellow value min-val log max-val 10.1]

; For any other problem use a logarithmic default scale
[set pcolor scale-color yellow value min-val log abs (max-val + 0.001)

1.05]
)

]

;; Set spotlight on or off
if spotlight = true [watch one-of true-best-patch]

end

; Shorter setup procedure for some representative landscape problems

22

to setup-search-landscapes-short
; Set up world and patch size
resize-world -500 500 -500 500
set-patch-size cell-size
display

; Create the 2D landscape according to the chosen cost function and bound
constraints

set xy-bounds ifelse-value landscape = "eggholder" [512] [6]
ask patches [

set x pxcor * (xy-bounds / max-pxcor)
set y pycor * (xy-bounds / max-pycor)

set value (ifelse-value
landscape = "sphere" [

ifelse-value (x = 5) or (y = 5)
[100]
[x ^ 2 + y ^ 2]

]
landscape = "sphere-offset" [

(x - 300 * (xy-bounds / max-pxcor)) ^ 2 + (y + 300 * (xy-bounds /
max-pxcor)) ^ 2

]
landscape = "rastrigin" [; Note that degrees, not radians, are needed for

the cos function
20 + ((x ^ 2) - 10 * cos ((180 / pi) * (2 * pi) * x)) + ((y ^ 2) - 10 *

cos ((180 / pi) * (2 * pi) * y))
]
landscape = "rosenbrock" [

100 * (y - (x ^ 2))^ 2 + (1 - x)^ 2
]
landscape = "himmelblau" [

((x ^ 2) + y - 11) ^ 2 + (x + (y ^ 2) - 7)^ 2
]
landscape = "eggholder" [; Note that degrees, not radians, are needed for

the sin function
((- x) * sin ((180 / pi) * sqrt (abs (x - (y + 47))))) - (y + 47) * sin

((180 / pi) * sqrt (abs ((x / 2) + (y + 47))))
]
[random-normal 0 500] ; The last case is a random landscape

)
]

if landscape = "random" [
; Smooth out the random landscape
ask min-n-of 4 patches [value] [ask patches in-radius 30 [set value value -

random-float 300]]
repeat 10 [diffuse value 1]

]

; Find the true best location
ifelse landscape = "himmelblau" [

; "himmelblau" exhibits 4 global minima (5 emerge due to discretisation
errors)

set true-best-patch min-n-of 5 patches [value]
] [

; All other cost functions have a single global minima
set true-best-patch patch-set min-one-of patches [value]

]

; Scale patches color within value limits
let min-val min [value] of patches
let max-val max [value] of patches
ask patches [set pcolor scale-color yellow value min-val log abs max-val 1.05]

; Set spotlight if switched on
if spotlight = true [watch one-of true-best-patch]

end

;;;;; END OF FILE ;;;;;;

23

24

Chapter 4

Software license

CIAO version 1.25
Copyright © 2024 Sergio Rojas-Galeano, Lindsay Álvarez, Martha Garzón.

This program is free software: you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free Software
Foundation, either version 3 of the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
License for more details.

You should have received a copy of the GNU General Public License along with
this program. If not, you can download it from:

https://www.gnu.org/licenses/gpl-3.0.en.html.

25

https://www.gnu.org/licenses/gpl-3.0.en.html

	Overview
	Description of the tool
	What is red CIAO?
	How it works
	How to use it
	Other distinctive features
	Try it yourself
	Extending the tool
	List of benchmark problems

	Installation and execution
	Online (web) version
	Desktop version

	Source code
	Software license

